LLab Report 1

Aim
To go through the basics of image processing tools like reading, displaying, converting colour and doing some
arithmetic operations on the medical images.

Theory
Reading and Displaying an Image
e Clear the MATLAB workspace of any variables and clear the command window using the commands
clear; close all; and clc;
e Use imread() toreadimage files into a matrix in MATLAB. Once you imread an image, it is stored
as an ND-array in memory.
e Use size() toseethe property of image matrix like dimensions and colour bit in MATLAB.
e Use imshow() toshow the image.
CODE
img=imread('read.png');
[x,y]=size(img);

imshow(img) ;

B Live Editor - E\image procesing lab\class O\imagereadanddisp.mix

imagereadanddisp.mlix +

&3
1 img=imread('read.png'); E
2 [x,y]=size(img);
3 imshow(img) ;| [=

Figure 1: use of imread() and imshow() function in MATLAB

Image Arithmetic
e As images are represented in a matrix format to perform image arithmetic the size of images should

be same. Operation on two images leads to a new image
e Use imadd () toaddtwo image files. The corresponding value of the matrix of two images are added

and in return we get a new image. We can also use a constant value instead of image, this will add the

1 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

image pixels with a constant. The two images should be of same dimension to do the addition as it
involves the matrix addition.

e Use imsubtract() to subtract two image files.

e Useimmultiply () tomultiply two files. The corresponding value of the matrix of two images are
multiplied and the resultant image is a new image. The two images should be of same dimension to do
the multiply as it involves the matrix. We can also use a constant value instead of image, this will
multiply the image pixels with a constant. If the pixel values are fractional then it will round it off to
nearest value

e Use imdivide () to divide two or more image files.

CODE

imgl=imread('mypicl.png')

img2=imread('mypic2.png')

j=imadd(imgl,img2)

subplot(1l,3,1);imshow(imgl);title("image 1")

subplot(1l,3,2);imshow(img2);title("image 2")

subplot(1,3,3);imshow(j);title("added images")

B Live Editor - E:\image procesing lab\class O\imagereadanddisp.mix *
| i isp.mix * untitled.mix * +

imgl=imread('mypicl.png')

img2=imread('mypic2.png"')

j=imadd(imgl,img2)

subplot(1,3,1);imshow(imgl);title("image 1")

subplot(1,3,2);imshow(img2);title("image 2")| image 1 image 2 added images
subplot(1,3,3);imshow(j);title("added images")

oOulh wNn R

Figure 2: use of imadd() to add two images in in MATLAB

CODE
imgl=imread('mypicl.png')

img2=imread('mypic3.png')

j=imsubtract(imgl,img2)
subplot(1l,3,1);imshow(imgl);title("image 1")
subplot(1l,3,2);imshow(img2);title("image 2")
subplot(1l,3,3);imshow(]j);title("subtracted images")

2 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

X

B Live Editor - untitied2.mix * ®
| addition.mix | constantmix untitled2.mix * o

3

[) (@)

imgl=imread('mypicl.png')

img2=imread('mypic3.png")

j=imsubtract(imgl, img2)
subplot(1,3,1);imshow(imgl);title("image 1")
subplot(1,3,2);imshow(img2);title("image 2")
subplot(1,3,3);imshow(j);title("subtracted images")

NoOowuhAwWwNR

image 1 image 2 subtracted images

Figure 3: use of imsubtract() to subtract two images in in MATLAB

CODE
imgl=imread('mypicl.png')

i=imadd(imgl,-100);
j=imadd(imgl,-50);
k=imadd(imgl,50);
l=imadd(imgl,100);

subplot(3,2,1);imshow(imgl);title('Original Image');

(

()i (
subplot(3,2,3);imshow(]j);title('constant value=-50"');
subplot(3,2,4);imshow(i);title('constant value=-100");
subplot(3,2,5);imshow(k);title('constant value= 50');
subplot(3,2,6);imshow(1l);title('constant value= 100');

B Live Editor - untitled.mix *
| imagereadanddisp.mix * | untitled.mix * |+ |

imgl=imread('mypicl.png')
i=imadd(imgl,-100); Original Image
j=imadd(imgl,-50);

k=imadd(imgl,50@);

1=imadd(imgl,100);
subplot(3,2,1);imshow(imgl);title(Original Image’);
subplot(3,2,3);imshow(j);title(' constant value=-50");
subplot(3,2,4);imshow(i);title(' constant value=-100');
subplot(3,2,5);imshow(k);title(constant value= 50');
subplot(3,2,6);imshow(l);title(constant value= 100');

Level -100 contrast

R OWL®NOU A WN =

o=

Level 100 contrast

o

Figure 4: use of imadd() to add constant to image in MATLAB

3 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

CODE
imgl=imread('mypicl.png')

img2=imread('mypic2.png')

j=immultiply(imgl,img2)
subplot(1,3,1);imshow(imgl);title("image 1")
subplot(1,3,2);imshow(img2);title("image 2")
subplot(1,3,3);imshow(j);title("multipled images")

. Live Editor - E\image procesing lab\class O\multiply.mlx *
addition.mix constantmix subtractmix multiply.mbe * +
&
1 imgl=imread('mypicl.png") l%
2 img2=imread('mypic2.png")
3 j=immultiply(imgl, img2) &
4 subplot(1,3,1);imshow(imgl);title("image 1")
5 subplot(1,3,2);imshow(img2);title("image 2") image 1 image 2 multipled images
6 subplot(1,3,3);imshow(j);title("multipled images™)
Figure 5: use of immultiply() to multiply two images in in MATLAB
CODE

imgl=imread('mypicl.png')

img2=imread('mypic2.png')

j=imdivide(imgl, img2)
subplot(1,3,1);imshow(imgl);title("image 1")
subplot(1l,3,2);imshow(img2);title("image 2")
subplot(1l,3,3);imshow(]j);title("divided images")

u Live Editor - E\image procesing lab\class O\division.mix

addition.mlx constant.mlx subtract.mlx multiply.mix division.mlx multiconstant.mlx * +

1 imgl=imread('mypicl.png") “g
2 img2=imread(mypic3.png") =

3 j=imdivide(imgl,img2) &
4 subplot(1,3,1);imshow(imgl);title("image 1") image 1 image 2 divided images

5 subplot(1,3,2);imshow(img2);title("image 2")

6 subplot(1,3,3);imshow(j);title("divided images™)

7

Figure 6: use of imdivide() to divide two images in in MATLAB

CODE
imgl=imread('mypicl.png')
i=immultiply(imgl,0.5);
j=immultiply(imgl,0.25);
k=immultiply(imgl,2.5);
(

l=immultiply(imgl,5);

4 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

subplot(3,2,1)
subplot(3,2,3)
subplot(3,2,4)
subplot(3,2,5);imshow(k);title('constant value= 2.5');

;imshow(imgl);title('Original Image');
;imshow(j);title('constant value= 0.5');
14

;jimshow(i);title('constant value= 0.25');

subplot(3,2,6);imshow(l);title('constant value= 5');

- Live Editor - E\image procesing lab\class 0\multiconstant.mix
addition.mlx co 4 subtractmix multiply.mix multiconstant.mix +

1 imgl=imread('mypicl.png') Original Image ‘%
2 i=immultiply(imgl,0.5); 2
3 j=immultiply(imgl,@.25); = — —] B
4 k=immultiply(imgl,2.5); i "‘t
5 l=immultiply(imgl,5); :
6 subplot(3,2,1);imshow(imgl);title(Original Image');
7 subplot(3,2,3);imshow(j) title(" constant value= ©.5"); constant value= 0.5 constant value= 0.25
8 subplot(3,2,4);imshow(i);title(constant value= ©.25");
9 subplot(3,2,5);imshow(k);title('constant value= 2.5');
10 subplot(3,2,6);imshow(l);title(constant value= 5%);
constant value= 2.5 constant value= 5

o &

" i

Figure 7: use of immultiply(') to multiply a constant to images in in MATLAB

Image Histogram

e An image histogram is a gray-scale value distribution showing the frequency of occurrence of each
gray-level value.

e 1imhist () displaysa plotof the histogram. If the input image is an indexed image, then the histogram
shows the distribution of pixel values above a color bar of the colormap cmap.

e The following code describes how to plot a histogram of an image without the inbuilt function.
CODE
j=imread('xray.jpg'); % here we are reading the image
i=rgb2gray(j); ¢ here we are converting the RGB image to gray scale
[rows,column]=size(i); ¢ we are accessing the image size
histvalue=zeros(1,255);% creating a zero matrix to store the frequency
for Rows =l:rows ¢ to traverse through each row of the image
for Columns=l:column & to access each element of the row
x=1(Rows,Columns); $% assigning a variable the intensity value
histvalue(l,x+1)=histvalue(l,x+1)+1l; %$updating the frequency
end
end
$¢plotting the original image and the histogram
k=0:1:254;
subplot(2,1,1); imshow(j);title('The image')
subplot(2,1,2); plot(k,histvalue);title('Histogram of image');grid on;

5 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

(4 Figure - [m] X

(2) Search Documentation

ile Edit View Insert Tools Desktop Window Help ~

s [comeae Normal > > & RE DI
- :
New Open Save 5 print nevicae | Tex B 1 U M CODE SECTIGN Run Step Stop
v v v |=bpot ¥ =i
- - i
FILE TEXT RUN The image
a9 HBIE > E > image procesing lab ¥ class! 4
C.. ®| [5] Live Editor - histogram.mix ® x |7 Variables - histn
[MIPBC31m | autom | m | histog m | histogrammix
i~
Gl 1 j-imread(*xray.jpg'); % here e are reading the image
= 2 i-rgb2gray(j); % here we are converting the RGB image to gray scale
) 3 [rous, column]=size(1); % we are accessing the image size
. a histvalue-zeros(1,255);% creating a zero matrix to store the frequency
&l 5 for Rows =L:rows % to traverse through each row of the image
| 6 for Columns=1:column % to access each element of the row
] 7 x=i(Rows,Columns); % assigning a variable the intensity value
= s histvalue(1,x+1)-histvalue(1,x+1)+1; %updating the frequency
—|] end " "
5
L 1e end 5 10 Hlst?gram using custolr‘| code
0 1 %histogram using imhist function
E 12 funchist-imhist (i)
= 13 #ploting the original image and the histogram 15 B
= 14 k=0:1:254;
B 15 subplot(3,1,1); imshou(3); title('The image')
. 16 subplot(3,1,2); bar(k,histvalue); title(’Histogram using custon code’);grid on;
B 17 subplot(3,1,3); bar(funchist);title('Histogram using function ');grid on;
= 18
i
O
o 0 50 100 150 200 250
0
L . : "
o 5 10° Hl‘stogram using fun:;-ﬂon
0
2, Command Window 15 4
. Error in hi lization (line 31)
. NEWHIST (1, p) =NEWHIST (1, p) +histvalue (1, elements) ;
>> histogramequalization
>> histogramequalization
Nod >> histogramequalization
>> histogramequalization
Jx >> par
<
m-| |zoom: 80% [uTF8 [tF [script [tn 18

Figure 8: code for plotting the histogram of an image in MATLAB

- j normal

1]
|
sl i
oo
. under-exposed
|
B 0 [= m
over-exposed
- , ; .
|
e (l
10000 !
oo 1
= |
-
|

Figure 9: Variation in the histograms of normal, underexposed and over exposed images.

6 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

200 250 300

1] 50 100 150 200 250 30¢

Figure 12: Histogram of medical image (MRI both T1 and T2 waited images).

7 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

Exercise(Assignment)

Exrcisel.

B =flip(A,dim) reverses the order of the elements in A along dimension dim. For example, if A is a matrix,
then flip(A,1) reverses the elements in each column, and flip(A,2) reverses the elements in each row.
CODE

img=imread("mypic3.png");

il=flip(img,1l); % this flips the iamge horizontally

i2=flip(img,2); %$this flips the image vertically

i3=flip(il,2);%this flip the image both horizontally and vertically

subplot(2,2,1);imshow(img);title('Original Image');
subplot(2,2,2);imshow(il);title('horizontally fliped');
subplot(2,2,3);imshow(i2);title('vertically fliped');
subplot(2,2,4);imshow(i3);title('flipped both
wise');subplot(3,2,6);imshow(l);title('constant value= 5');
B Live Editor - untitled9.mix * ® x
untitled9.mix * constant.mix |
&
1 img=imread("mypic3.png"); Original Image horizonsall(y fliped B
2 i1=flip(img,1); % this flips the iamge horizontally 3
3 i2-flip(img,2); %¥this flips the image vertically E
4 i3=f1ip(i1,2);%this flip the image both horizontally and vertically
Z subplot(2,2,1);imshow(img);title(

subplot(2,2,2);imshow(i1);title("
subplot(2,2,3);imshow(i2);title("
subplot(2,2,4);imshow(i3);title(' flipped both wise'

v ow N

Figure 13: use of flip() to flip images in MATLAB

Histogram Equalization

e Histogram Equalization is a computer image processing
technique used to improve contrast in images. It accomplishes

original gy this by effectively spreading out the most frequent intensity

153
: \ I 285 values, i.e. stretching out the intensity range of the image.
[[] 1]] \ . . .
L T This method usually increases the global contrast of images
i] 1 I T . .
(Y L T T when its usable data is represented by close contrast values.
stretched f I I | LI T) . .
o ! i+ v v - Thisallows for areas of lower local contrast to gain a higher
[4 ¥ Y ¥ v ¥ i
contrast.
@ CCRSTCCT

Figure 14: graphical depiction of histogram equalization.

8 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

I 3 [
!:I_léi’_(l@ o QJM&JZ.(ZQHOH. \O e
: | {2
\o [Or %“(:aml%ﬂimg Pratebiidy | CFD |cFOXL) 4 ; 1] o0

Q / Cwl
°[q Z;'_‘,

I/ Ly}
/4

=].¢
¢ j;lt' . :3

Figure 15: process of finding histogram equalization.

CODE
y=uigetfile('*.*"');

j=imread(y);
i=rgb2gray(Jj);
rows=height (1);
column=width(1i);
histvalue=zeros(1l,256);
for Rows =l:rows
for Columns=1:column
x=1 (Rows,Columns) ;
histvalue(l,x+1)=histvalue(l,x+1)+1;
end

end

$histogram ends here—-——-—-—————————————————————

$probability —-——————————

px=zeros(1l,256);
for columns=1:256
px(1l,columns)=histvalue(l,columns)/(rows*column) ;

end

$cfd finding —-—-————————— -

cdf=zeros(1,256);
cumulative=0;
for columns=1:256

cdf(1l,columns)=px(1l,columns)+cumulative;

9 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

a); ten e (L wol zalion

[T

p

cumulative=cumulative+px(1l,columns) ;
end
$cfd normalising —-—————————————
CDF=255*cdf;
newhist=round(CDF) ;
NEWHIST=zeros(1,256);
for elements=1:256

newgraylevel=newhist (1l,elements)+1;

NEWHIST(1l,newgraylevel)=NEWHIST(1l,newgraylevel)+histvalue(l,elements);

end

new=histeq(i);

histn=imhist (new);

figure();
k=0:1:255;

subplot(2,2,1);bar(k,imhist(i));title('Histogram using imhist
function')

subplot(2,2,2);bar(k,histvalue);title('Histogram using custom code')

subplot(2,2,3);bar(histn);title('Histogram eualization using histeq
function')

subplot(2,2,4);bar(k,NEWHIST);title('Histogram eualization using
custom code')

[] Live Editor - untitled.mix * ® x B Variables - hisin
| MIP.Ex3_1.m | auto.m | labsesional.m | histogramequalization.m | histogram.mlx | unti{ 4 Figure - O x
1 Zy-uigetfile('*.**); “| File Edit View Insert Tools Desktop Window Help e
2 ™ = \
3 i-imread("cameraman. tif"); Dede 208 K E
2 %i=rgbgray(3j);
5 rows=height(i);
6 column=width(i); Histogram using imhist function Histogram using custom code
7 histvalue-zeros(1,256); 2000 2000
8 for Rows =1:rous
9 for Columns=1:column
18 x=1(Rous, Columns) ; 1500 1500
1 histvalue(1,x+1)=histvalue(1,x+1)+1;
12 end
13 end
12 Zhistogram ends hepe--—- -~~~ 1000 1000
15 EProbabIlity - ---nmmmmmm oo m e
16 px=zeros(1,256);
17 for columns=1:256 500 500
18 px(1,columns)=histvalue(1, columns)/ (rous*column);
19 end
20 %efd Finding ---------mmm s 0 0
21 cdf=zeros(1,256);
23 cunulative-e; 0 50 100 150 200 250 0 50 100 150 200 250
23 for columns=1:256
2 €df(1, columns)=px (1, columns)+cumulative;
25 cunulative-cumulative+px(1,columns); Histogram eualization using histeq function _ Histogram eualization using custom code
26 end 2000 2000
27 %cfd normalising ----------m--mmmomeomeoo o
28 CDF=255*cdf;
29 newhist=round(CDF);
38 NEWHIST=zeros(1,256); 1500 1500
31 for elements=1:256
32 neugraylevel-neuhist(1,elements)+1;
33 NEWHIST (1, newgraylevel)=NEWHIST(1,newgraylevel)+histvalue(1,elements); 1000 1000
EL end
35
36 new=histeq(i);
37 histn=imhist(new); 500 500
38
39 figure();
20 k=@:1:255; 0 0
41 subplot(2,2,1);bar(k,imhist(i));title(Histogram using imhist function') 0 50 100 150 200 250 1] 50 100 150 200 250
22 subplot(2,2,2) ;bar(k, histvalue);title('Histogram using custom code')
43 subplot(2,2,3);bar(histn);title(Histogram eualization using histeq function')
22 subplot(2,2,4) ;bar(k,NEWHIST) ;title(Histogram eualization using custom code')

Figure 16: plots showing histograms before and after equalization.

10 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

Auto Focus
e Autofocus is the process of improving the image quality on the basis of sharpness of the image. Image

which is sharp will have frequency (change in intensity) more as compared to an image of same
dimension and same content with less blur.

e By calculating the frequency over all the pixel, we can conclude which image is more focused.
CODE

function [temp]=autofocus (b)

[m n]=size(b);

temp=double (0);

for i=1l:m-1
for j=1:n
k(i,J)=b(i+1l,j)-b(i,J); %substracting the adjacent row pixels$%
temp=temp+double(k(i,j));% adding all the differenced pixels%

end
end
end
Function 1:function for calculating the cumulative frequencies.
CODE
$% reading the images$%%%%

fprintf('\n upload an imagel \n');

x=uigetfile('*.*"'); $to get access to the image
X=imread(x); $read the image

fprintf('\n upload 2nd image\n');

y=uigetfile('*.*'); % to get access to the
image

Y=imread(y); % read the image
sl=size(X); $ to find the size of the image
if length(sl)==3 % to find it is color image or gray scale image
X=rgb2gray(X); $if color image convert it into gray scale
end

s2=size(Y); % to find the size of the image

if length(s2)== $ to find it is color image or gray scale image
Y=rgb2gray(Y); $if color image convert it into gray scale

end

$% auto focusing %$%%%%%%%%%%%

kl=autofocus(X); $scall for auto focus
function

11 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

k2=autofocus(Y);
temp=0;
while (k2>k1
fprintf('\n present image is better focused than previous image');

)
(
R=input('still u want to check then type 1 if not 0\n'); % giving
input 1 or 0

if (R==1)
fprintf('\n upload another image\n');

xl=uigetfile('*.*');

Xl=imread(x1l); $1if input is 1 read another image
s3=size(X1); $to find size of the image

if length(s3)==

X1l=rgb2gray(X1l); % changing color image to gray
end
k2=autofocus (X1); % call for auto focus
function
else

fprintf('\n present image is best focused\n');
temp=1;
break;
end
end
if (temp==0)

fprintf('\n previous image is better focused than present image\n
go to the back step\n');

endend

4

Command Window
upload an imagel
upload 2nd image
previous image is better focused than present image

go to the back step
Jx>>

image1 image2

Figure 17: command window showing which image is more focused.

Shreenandan Sahu [120BM0806

12 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

LLab Report 2

Aim

Using Discrete Fourier Transform (DFT) to analyse images and operate various filters on them.

Theory

The two-dimensional discrete Fourier transform (DFT) of an image f(x,y) of size M x N is
represented by:

M-1N-1)
Fy)=Y Y f(x,y)e 2radiiontsy
x=0 y=0

e The corresponding inverse of the above discrete Fourier transform is given by the following

equation
| M-nl .
f(x,y) :m Z Z F(u’v)eﬂff(uxfﬂd’ﬂyfm
u=0 =0

e The magnitude and phase spectrum of an image f (X, y) is represented by
Fu,v) =| Fu,v)| e/ 7€ L)
ll:‘(‘u‘ 1)[= [R-”(“‘ v) + I(u, v)ri;‘,,

[(u, v) }
R(u. v)

d(u,v) = lan_'[

o where R(u, v) and I(u, v) are the real and imaginary components of the spectrum F(u, v).

Similarly, the power spectrum is represented by

2

P(u.v) = |F(u,v)
= R*(u,v) + I*(1, v)

Translation Property:

fanEDTY s RN, v-N2)

Rotation Property:

x=rcosf, y=rsinf, wu=wcosp, VvV=wsing

1. 6+6) <5 Flw. 9+90)

14 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

e Weuse £fft2() and fftshift () for DFT and it’s translation property respectively

CODE
% Spectrum of an image

[

% Create an image with a white rectangle and black background.

clear; close all; clc;

% Generate an image

im = zeros(30,30);

figure();

imshow(im); title('Original Image'); axis on

o\

display('Spectrum of the image');

o\

display('Press any Key');

o\

pause

% Find the Spectrum using FFT
imF = fft2(im);

o\
o\

imF mag = abs(imF);

figure(); imshow(imF mag,[]);title('Magnitude Spectrum'); axis on

o\
o\

o°

display('Spectrum of the image with fftshift');

o°

display('Press any Key');

o°

o°

pause

% The zero-frequency coefficient is displayed in the upper left hand
corner.

()

% To display it in the center, you can use the function fftshift.

imF mag = fftshift(imF);

imF mag = abs(imF_mag);

figure(); imshow(imF mag,[]);title('Magnitude Spectrum with
fftshift'); axis on

o°
o°

15 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

% display('Spectrum of the image with zero padding');

% display('Press any Key');

% pause

$ To create a finer sampling of the Fourier transform,

% you can add zero padding to im when computing its DFT.

imF=fft2(im, 256,256);
imF mag = abs(fftshift(imF));

figure(); imshow(imF mag,[]); title('Magnitude Spectrum with Zero
padding'); axis on
% display('Spectrum of the image with log magnitude');

o\

display('Press any Key');

o\

pause

% To brighten the display, you can use a log function
imF log mag=log(l+imF mag);

figure,imshow(imF_log mag,[]);title('Log Magnitude Spectrum'); axis
on

disp('End of the program');

! Live Editor - E\image procesing lab\class 2\3_1.mix
auto.m autofocus.m MIP_Ex_3_1.m 3_T.mix fft._class.mix MIP_Ex 3 2.m +
‘ Magnitude Spectrum with Zero padding - “
1 =
2 % spectrum of an image :
3 % Create an image with a white rectangle and black background. 50 &
4 clear; close all; clc; [
5 100
6 % Generate an image -
7 im = zeros(30,30);
150
8 %%
9 im(5:24,13:17)=1;
10 %% 200
11 figure();
12 imshow(im); title('Original Image'); axis on 250
13 o 50 100 150 200 250
14 % display('spectrum of the image");
15 % display('Press any Key');
16 % pause
17 Log Magnitude Spectrum
18 % Find the Spectrum using FFT
19 imF = fft2(im);
20 %%
21 imF_mag = abs(imF);
22 figure(); imshow(imF_mag,[]);title('Magnitude Spectrum'); axis on
23 %%
24 % display('spectrum of the image with fftshift');
25 % display(‘Press any Key');
26 %
27 % pause
28
29 % The zero-frequency coefficient is displayed in the upper left hand cc_ 50 100 150 200 250
30 % Tn Aicnlauw i+ in +thn rantan v ram ien tha Functian FEEchifE
» -

Figure 1: use of fft2() and fftshift() function in MATLAB

16 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

CODE
% Example 2: Spectrum and reconstruction of an image with magnitude
and

% phase spectrums

clear; close all; clc;
a=zeros (256,256);
a(78:178,78:178)=1;

figure();

subplot(2,2,1); imshow(a);title('Original Image'); axis on;

o\
o\

af=fftshift(fft2(a));
subplot(2,2,2);imshow(abs(af));title('Spectrum of Image');

o\
o\

o\

Now rotated the image by 45 degrees

[x,y] = meshgrid(1:256,1:256);
b=(x+y<329) & (x+y>182) & (xX-y>-67) & (xX-y<73);
subplot(2,2,3);imshow(b);title('Rotated Image');axis on;

o\
o\

bf = abs(fftshift(fft2(b)));
subplot(2,2,4);imshow(bf);title('Spectrum of Rotated Image');

B Live Editor - untitled3.mlx
auto.m autofocus.m fft._class.mlix MIP_Ex_ 3 2.m untitled3.mix * +
(2]

1 Original Image Spectrum of Image =
2 idas oo -
3 % Example 2: Spectrum and reconstruction of an image with magnitude and s T [=
a4 % phase spectrums

5

6 clear; close all; clc;

7 a=zeros(256,256);

3 a(78:178,78:178)=1;

9
10 figure(); 50 100 150 200 250
11 subplot(2,2,1); imshow(a);title('original Image'); axis on;
12 5 (2220 e corte g s ’ Rotated Image
13 af=fftshift(fft2(a));
14 subplot(2,2,2);imshow(abs(af));title('spectrum of Image');
15 b
16 % Now rotated the image by 45 degrees
17 [x,y] = meshgrid(1:256,1:256);
18 b=(x+y<329)&(x+y>182)&(x-y>-67)&(x-y<73);
19 subplot(2,2,3);imshow(b);title('Rotated Image');axis on;
2 e e 50 100 150 200 250
7 bf = abs(fftshift(Fft2(b)));
22 subplot(2,2,4);imshow(bf);title(Spectrum of Rotated Image');|

Figure 2: use of fft2() and fftshift() function in MATLAB

17 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

CODE

() ()

% Example 3 % Explore the FFT of an image
clear;close all;clc;

m = imread('hand-x-ray.Jjpg');
m n] = size(im);

~—

o\
o\

% Spectrum calculations

imF = fft2(im); % 2D FFT
imF mag = abs(imF); % Magnitude Spectrum

s = log(l+abs(fftshift(imF)));% Log Magnitude Spectrum

imF ph=angle(imF); % Phase Spectrum
figure(
subplot 1); imshow(im); title('Original Image');

1,3 2); imshow(s,[]); title('Log Magnitude Spectrum');

)i
(1
subplot(
(

subplot(1,3,3); imshow(imF_ph); title('Phase Spectrum Image');

o\
o\

% Reconstruction

% Reconstruction by combining both magnitude and phase spectrum

imr = ifft2(imF mag.*exp(li*imF ph))/(m*n);

o°
o°

% Reconstruction by only magnitude spectrum
imr mag = abs(ifftshift(ifft2(imF _mag)));
$ imr mag = abs((ifft2(imF_mag)));

% Reconstruction by only phase spectrum

imr ph = ifft2(exp(li*imF ph))/(m*n);

figure();
subplot(1,3,1

); imshow(imr,[]); title('Recon. Magn and Phase');
subplot(1,3,2)

; imshow(uint8(imr mag),[]); title('Recon.with Mag
Spectrum only');
subplot(1,3,3); imshow(imr ph,[]);title('Reconstruction with Phase

)i

Spectrum only

18 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

‘ Live Editor - untitled3.mix *

auto.m autofocus.m fft._class.mlx MIP_Ex_ 3 2m untitled3.mlix * MIP_Ex_3_3.m +
1 clc
2 % Example 3 % Explore the FFT of an image

Original Image Log Magnitude Spectrum Pha

4 clear;close all;clc;
s
6 im = imread(’hand-x-ray
7 [m n] = size(im);
8 5

9 % Spectrum calculations
10 imF = FFt2(im); % 2D FFT
11 imF_mag = abs(imF); % Magnitude Spectrum
12 s = log(1+abs(fftshift(imF)));% Log Magnitude Spectrum
13 imF_ph=angle(imF); % Phase Spectrum
14
15 figure(
16 subp:); imshow(im); title('0
17 subp 5 imshow(s,[]); title(’Log Magn)
18 subplot(1,3,3); imshow(imF_ph); title('Phase Spec);
19 E53
28 % Reconstruction
21
22 % Reconstruction by combining both magnitude and phase spectrum
23 imr = iFFt2(imF_mag.*exp(1i*imF_ph))/(m*n);
24 5
25 % Reconstruction by only magnitude spectrum
26 imr_mag = abs(ifftshift(ifft2(imF_mag)));
27 % imr_mag = abs((ifft2(imF_mag)));
28
i; jmﬁi;”it:ﬁ;t;‘é”xl;’(ﬁ:};fgf“iEy‘f;t‘“” Recon. Magn and with Mag with Phase Spectrum on
31 y
32 w
33 Ffigure();
34 subplot(y; imshow(imr,[]); Magn and Phase')
35 subplot(5 imshow(uints(imr r) Recon.with pectrum only');
36 subplot(5 imshow(imr_ph,[]) (*Reconstruction with Phase Spectrum only'); ™
37

Figure 3: use of fft2() and fftshift() function in MATLAB

Exercise

Exercise1: (a) Write a Matlab code to generate the following images. Assume that the width

of the white pixel for Fig(a) and height of the white pixel Fig(b) are unity.

0 127 255 0 127 255

0 0

127 127

255
(a) (b)
(b) Find and display the magnitude and phase spectrums.

(c) Suppose the vertical line in Fig(a) and horizontal line in Fig(b) are rotated by
(i) £3009, (ii) +45° and (iii) +90°. Find and display the magnitude and phase

255

spectrums. Comment on the results.

CODE
% x=zeros(255,255);

y=zeros(255,255);

v(127:128,1:255)=1
xX(1:255,127:128)=1;

subplot(3,2,1);imshow(x);title('horizontal white line of height 1lpx');

19 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

subplot(3,2,2);imshow(y);title('vertical white line of width 1px');

fft x=fft2(x);

fft shift x=fftshift(fft x);

abs fft shift x=abs(fft shift x);
abs fft x=abs(fft x);

fft y=fft2(y);

fft shift y=fftshift(fft y);

abs fft shift y=abs(fft_shift y);
abs fft y=abs(fft y);

subplot(3,2,3);imshow(abs fft x);title('horizontal mag spectrum
without shift');

subplot(3,2,4);imshow(abs_fft y);title('vertical mag spectrum without
shift');

subplot(3,2,5);imshow(abs fft shift x);title('horizontal mag spectrum
with shift');

subplot (3,2

,6);imshow(abs_ fft shift y);title('vertical mag spectrum
with shift');

horizontal white line of height 1px vertical white line of width 1px

horizontal mag spectrum without shift vertical mag spectrum without shift

horizontal mag spectrum with shift vertical mag spectrum with shift

Figure 4: use of fft2() and fftshift() function in MATLAB

20 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

CODE

()

% %$rotating the lines by 45 degree
x=zeros (255,255);
for i=1:255
for j=1:255

if j==i

x(1i,J)=1;

end

end

end

fft x=fft2(x);

fft shift x=fftshift(fft x);

abs fft shift x=abs(fft shift x);
abs fft x=abs(fft x);

$rotating the lines by 30 degree
y=zeros(255,255);
for k=1:255
for 1=1:255
if 1==round(1.732*k)
y(k,1)=1;
end
end

end

fft y=fft2(y);

fft shift y=fftshift(fft y);

abs fft shift y=abs(fft shift y);
abs fft y=abs(fft y);

subplot(2,3,1);imshow(x);title('rotated by 45 ');

14
subplot(2,3,2);imshow(abs_ fft x);title('fft of 45 ');
subplot(2,3,3);imshow(abs_fft shift x);title('fft shift of 45 ');
subplot(2,3,4);imshow(y);title('rotated by 30 ');

subplot(2,3,5);imshow(abs_ fft y);title('fft of 30 ');

14
subplot(2,3,6);

)
)
)
)
)
) ;imshow(abs fft shift y);title('fft shift of 30 ');

(
(
(
(
(
(

21 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

B Live Editor - E\image procesing lab\class 2\rotate.mlx
auto.m autofocus.m ft._class_exercise.mix rotate.mix +
= e —
9 end - ()
1e =
11 fft_x=fft2(x); B
12 fft_shift_x=fftshift(fft_x);
13 abs_fft_shift_x=abs(fft_shift_x);
14 abs_fft_x=abs(fft_x);
15
16 %rotating the lines by 3@ degree rotated by 45 fft of 46 fft shift of 45
17 y=zeros(255,255);
18 for k=1:255
19 for 1=1:255
20 if l==round(1.732*k)
21 y(k,1)=1;
22 end
23 end
24 end
25
26 FFt_y=Fft2(y);
27 fft_shift_y=fftshift(fft_y);
28 abs fft_shift y=abs(fft shift y);
29 abs_fft_y=abs(fft_y);
30
31 subplot(2,3,1);imshow(x);title('rotated by 45 *);
32 subplot(2,3,2);imshow(abs Fft x);title('fft of 45 ');
33 subplot(2,3,3);imshow(abs_fft_shift_x);title('fft shift of 45 ");
34 subplot(2,3,4);imshow(y);title('rotated by 30);
35 subplot(2,3,5);imshow(abs_fft_y);title('fft of 30 *);
36 subplot(2,3,6);imshow(abs Fft shift y);title('fft shift of 30 ');
37
»
rotated by 45 fft of 45 fft shift of 45

rotated by 30

fft shift of 30

Figure 5: use of fft2() and fftshift() function in MATLAB

Exercise2: (a) Write a Matlab code to generate the following images. Assume that the radius
of circle is 32 for Fig(a).

(b) Find and display the magnitude and phase spectrums.

0 255 0 127 255

0 0

255 235

(b)

CODE
X x=zeros(255,255);

for i1i=1:255

22 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

for j=1:127
x(1,3)=1;

end
end
fft x=fft2(x);
fft shift x=fftshift(fft x);
abs fft shift x=abs(fft shift x);
abs fft x=abs(fft x);

r=32;x c=0;y c=0;
[v,x]=ndgrid(-127:128,-127:128);
y= (x-x c)."2+(y-y c)."2 <= r"2;

fft y=fft2(y);
fft shift y=fftshift(fft y);

abs fft shift y=abs(fft shift y);
abs fft y=abs(fft y);
subplot(3,2,1

) ;jimshow(x);title('black and white rectangle');
subplot(3,2,2)
)

14
;imshow(y);title('circle of radius 32');

subplot(3,2,3);imshow(abs fft x);title('rectangle mag spectrum without

shift');

subplot(3,2,4);imshow(abs_fft y);title('circle mag spectrum without

shift');

subplot(3,2,5);imshow(abs fft shift x);title('rectangle mag spectrum

with shift');

subplot(3,2,6);imshow(abs_fft shift y);title('circle mag spectrum

with shift');

B Live Editor - untitled6.mix

auto.m autofocus.m rotate.mix fft._class_exercise.mix rectangle.mix untitled6.mix * +
1 x=zeros(255,255);
2 for i=1:255
3 for j=1:127
a x(1,3)-1;
5 end
6 end black and white rectangle circle of radius 32
7 fft_x=fft2(x);
8 fft_shift_x=fftshift(fft_x);
9 abs_fft_shift_x=abs(fft_shift_x);
10 abs_fft_x=abs(fft_x);
11
12 r=32;x_c=0;y_c=0; rectangle mag spectrum without shift circle mag spectrum without shift
13 [y,x]=ndgrid(-127:128,-127:128);
14 y= (X-X_C)."24(y-y_€)."2 <= r"2;
15
16 FFt_y=Ffta(y);
17 FFt_shift y=Fftshift(fft y);
18 abs_fft_shift_y=abs(fft_shift y); rectangle mag spectrum with shift circle mag spectrum with shift
19 abs_fft_y=abs(fft_y); i R
20 subplot(3,2,1);imshow(x);title('black and white rectangle');
21 subplot(3,2,2);imshow(y);title(circle of radius 32");
22 subplot(3,2,3);imshow(abs_fft_x);title('rectangle mag spectrum without shift");
23 subplot(3,2,4);imshow(abs_fft_y);title('circle mag spectrum without shift'});
24 subplot(3,2,5);imshow(abs_fft_shift_x);title('rectangle mag spectrum with shift");
25 subplot(3,2,6);imshow(abs_fft_shift_y);title('circle mag spectrum with shift");
26

Figure 6: use of fft2() and fftshift() function in MATLAB

23 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

black and white rectangle circle of radius 32

rectangle mag spectrum without shift circle mag spectrum without shift

rectangle mag spectrum with shift

Figure 7: use of fft2() and fftshift() function in MATLAB

Exerciseb: (a) Write a Matlab code to generate the following images.

0 a7 167 255 0 65 190 255

0 0

65
87

167
190

255 255

(a) (b)
(b) Find and display the magnitude and phase spectrums.
(c) Suppose the white rectangular images are rotated by
(i) £459 and (ii) £120°. Find and display the magnitude and phase

spectrums. Comment on the results.

24 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

CODE
x=zeros (255,255);

y=zeros(255,255);

y(65:190,87:167)
X(87:167,65:190)

1
1

subplot(3,2,1);imshow(x);title('horizontal white line of height 1lpx');
subplot(3,2,2);imshow(y);title('vertical white line of width 1px');

fft x=fft2(x);

fft shift x=fftshift(fft x);

abs fft shift x=abs(fft shift x);
abs fft x=abs(fft x);

fft y=fft2(y);

fft shift y=fftshift(fft y);

abs fft shift y=abs(fft shift y);
abs fft y=abs(fft y);

$ploting all the images and there fft

subplot(3,2,3)
without shift'

;imshow(abs fft x);title('horizontal mag spectrum

)i

subplot(3,2,4);imshow(abs_fft y);title('vertical mag spectrum without
shift');

subplot(3,2,5);imshow(abs fft shift x);title('horizontal mag spectrum
with shift');

subplot(3,2,6);imshow(abs_fft shift y);title('vertical mag spectrum
with shift');end

B Live Editor - untitledS.mix *
auto.m autofocus.m rotate.mlx fft._class_exercise.mix untitled5.mix * +
1 x=zeros(255,255); - . - \\
2 y=zeros(255,255); =
> -
4 y(65:190,87:167)=1 horizontal white line of height 1px vertical white line of width 1px =]
5 x(87:167,65:190)=1
6
7 subplot(3,2,1);imshow(x);title("horizontal white line of height 1px');
8 subplot(3,2,2);imshow(y);title(vertical white line of width 1px');
9
10 it x=fft2(x); horizontal mag spectrum without shift vertical mag spectrum without shift
11 fft_shift_x=fftshift(fft_x);
12} abs_fft_shift x=abs(fft_shift_x);
13 abs_fft_x=abs(fft_x);
14 Fft_y=ffta(y);
15 fft_shift y=fftshift(fft_y);
o abs_fft shift y=abs(fft shift y); horizental mag spectrum with shift vertical mag spectrum with shift
17 abs_fft_y=abs(fft_y); i
18 subplot(3,2,3);imshow(abs_fft_x);title(horizontal mag spectrum without shift'); e . e] i
19 subplot(3,2,4);imshow(abs_fft_y);title(vertical mag spectrum without shift"); . EH :
20 subplot(3,2,5);imshow(abs_fft_shift_x);title('horizontal mag spectrum with shift'); - il
21 subplot(3,2,6);imshow(abs_fft_shift_y);title(‘vertical mag spectrum with shift');
»

Figure 8: use of fft2() and fftshift() function in MATLAB

25 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

vertical white line of width 1px

horizontal white line of height 1px

vertical mag spectrum without shift

horizontal mag spectrum without shift
i

=

horizontal mag spectrum with shift vertical mag spectrum with shift
TR I IE] T BE|ELE] _:l'l!
: g i1l H E] lri

Figure 9: use of fft2() and fftshift() function in MATLAB

Shreenandan Sahu [120BM0806

26 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

Aim

LLab Report 3

Performing histogram Equalization on images by developing algorithm for it.

Theory

Histogram Equalization

e Histogram Equalization is a computer image processing
technique used to improve contrast in images. It accomplishes
this by effectively spreading out the most frequent intensity

ariginal - gy 153 values, i.e. stretching out the intensity range of the image.
! \ I 285 This method usually increases the global contrast of images

RN NS when its usable data is represented by close contrast values.

1 I T This allows for areas of lower local contrast to gain a higher

gtretched 4 I
i

\ 1\ contrast.

2485
v u y Figure 1: graphical depiction of histogram
mcersicet equalization.

Histogram equalization is a technique used in image processing to enhance the contrast of an image.
It works by redistributing the pixel intensities in an image so that they are more evenly distributed
across the full range of intensity values.

The basic idea behind histogram equalization is to compute a histogram of the pixel intensities in the
image, and then to use that histogram to create a mapping function that will transform the original
image so that it has a more uniform distribution of pixel intensities.

The mapping function used in histogram equalization is typically a cumulative distribution function
(CDF), which represents the cumulative frequency of each intensity value in the histogram. The CDF
is then normalized so that its values range from 0 to 1, and this normalized CDF is used to map the
pixel intensities in the original image to new intensity values that are more evenly distributed.

The result of histogram equalization is an image with improved contrast, where the darker and lighter
areas are more pronounced, making it easier to distinguish details in the image. However, it is
important to note that histogram equalization may also introduce artifacts or noise in the image if not
applied properly, and it may not be appropriate for all types of images.

O{—’.”C_J’l_ﬁ”“/m', \O | O"

(o | (o] [Tl rs[ce ferotr_ }1 3! zo
}Q 2| [0 [3 |3 [# =0 3 3
3[3]o] | 112 R aflon equdiidon
= _ &

s 2] 1 |26 D

Figure 2: process of finding histogram equalization.

27 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

CODE
y=uigetfile('*.*"');

j=imread(y);
i=rgb2gray(Jj);
rows=height(i);
column=width(1i);
histvalue=zeros(1l,256);
for Rows =l:rows

for Columns=1:column

x=1i (Rows,Columns) ;
histvalue(l,x+1)=histvalue(l,x+1)+1;

end
end
$¢histogram ends here-—-——————————————————
$probability -———————————
px=zeros(1l,256);
for columns=1:256

px(1l,columns)=histvalue(l,columns)/(rows*column);
end
$cfd finding ——————————————
cdf=zeros(1,256);
cumulative=0;
for columns=1:256

cdf(1l,columns)=px(1l,columns)+cumulative;
cumulative=cumulative+px(1l,columns) ;

end
$cfd normalising —-———————————————
CDF=255*cdf;
newhist=round (CDF) ;
NEWHIST=zeros (1,256);
for elements=1:256

newgraylevel=newhist(1l,elements)+1;

NEWHIST(1l,newgraylevel)=NEWHIST(1l,newgraylevel)+histvalue(l,elements);

end

new=histeq(i);

28 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

histn=imhist (new);

figure();
k=0:1:255;

subplot(2,2,1);bar(k,imhist(i));title('Histogram using imhist

function')

subplot(2,2,2);bar(k,histvalue);title('Histogram using custom code')

subplot(2,2,3);bar(histn);title('Histogram eualization using histeq

function')

subplot(2,2,4);bar(k,NEWHIST);title('Histogram eualization using

custom code')

(] Live Editor - untitled.mix *

| MIPEx3_1m | auto.m | labsesional.m | histogramequalization.m | histogram.mix
1 sy-uigetfile('*.*");

2

3 i-imread("cameraman.tif");

4 %i=rgb2gray(j);

5 rows=height(i);

6 column=width(i);

7 histvalue=zeros(1,256);

8 for Rows =1:rows

9 for Columns=1:column

10 x=1(Rows,Columns);

11 histvalue(1,x+1)=histvalue(1,x+1)+1;

12 end

13 end

14 %histogram ends here

15 Zprobability

16 px=zeros(1,256);

17 for columns=1:256

18 px(1,columns)=histvalue(1, columns)/(rous*column);

19 end

28 FCFd Finding --=---mmmmmmmmm e

21 cdf=zeros(1,258);

22 cumulative=e;

23 for columns=1:256

24 €df(1,columns)=px (1, columns)+cumulative

25 cumulative=cumulative+px(1,columns);

26 end

27 %cfd NOrMAlising --=--mn-mmmmmm e e

28 CDF=255%cdf;

29 newhist=round(CDF);

30 NEWHIST-zeros(1,256);

31 for elements=1:256

32 newgraylevel=nenhist(1,elements)+1;

33 NEWHIST (1, newgraylevel)=NEWHIST(1, newgraylevel)+histvalue(1, elements);
34 end

35

36 new=histeq(i);

37 histn-imhist(new);

38

39 figure();

20 k=8:1:255;

a1 subplot(2,2,1);bar(k,imhist(i));title(Histogram using imhist function")
42 subplot(2,2,2) ;bar(k, histvalue);title(Histogram using custom code’)

23 subplot(2,2,3);bar(histn);title(Histogram eualization using histeq function')
aa subplot(2,2,4) ;bar(k,NEWHIST) ;title(Histogram eualization using custom code’)

@ x [Variables - histn

| untit 4 Figure - [m] X
“| File Edit View Insert Tools Desktop Window Help »
Dode @ 08 RE
Histogram using imhist function Histogram using custom code

2000 2000

1500 1500

1000 1000

500 500

0 0

0 50 100 1560 200 250 0 50 100 150 200 250

Zgggtogram eualization using histeq function Zogléstogram eualization using custom code

1500

1000

501

S

0

1500

1000

500

0

50 100 15

0

200

250

S}
I3
=}
=}
S

150 200 250

Figure 3: plots showing histograms before and after equalization.

Shreenandan Sahu |[120BM0806

29 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

LLab Report 4

Aim
To apply spatial domain filters on the images and enhance the images in MATLAB.

Theory

Spatial filters are one of the most commonly used techniques in image processing. They are used to
enhance or suppress certain features in an image by altering the pixel values within a given neighbourhood
of each pixel in the image.

A spatial filter works by replacing the value of each pixel with a weighted average of the values of its
neighbouring pixels. The weights assigned to each neighbouring pixel depend on the type of filter being
used and the distance of the pixel from the centre pixel.

There are two types of spatial filters: linear and non-linear. Linear filters are those that use a fixed kernel
or matrix to calculate the weighted average of the neighbouring pixels. Examples of linear filters include
the mean filter, median filter, and Gaussian filter. These filters are widely used for noise reduction, image
smoothing, and edge detection.

Non-linear filters, on the other hand, use a varying kernel to calculate the weighted average of
neighbouring pixels. Examples of non-linear filters include the maximum filter, minimum filter, and
bilateral filter. These filters are used for tasks such as image sharpening, feature extraction, and image
segmentation.

In summary, spatial filters are a powerful tool in image processing for enhancing, filtering, and segmenting
images. The choice of filter depends on the specific task at hand and the characteristics of the image being
processed.

Mean filter: This filter is used to reduce noise in an image by replacing each pixel value with the average
value of the neighbouring pixels within a given kernel. The mean filter is a linear filter and is commonly
used for smoothing and blurring an image.

Median filter: This filter is used to remove salt-and-pepper noise in an image by replacing each pixel
value with the median value of the neighbouring pixels within a given kernel. The median filter is a non-
linear filter and is effective in preserving edges in an image.

Gaussian filter: This filter is used to blur an image by replacing each pixel value with the weighted
average of the neighbouring pixels within a Gaussian kernel. The Gaussian filter is a linear filter and is
commonly used for smoothing an image while preserving its edges.

Laplacian filter: This filter is used for edge detection in an image by highlighting areas of high spatial
frequency. The Laplacian filter is a non-linear filter and is commonly used for sharpening an image.

30 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

MEAN AND WEIGHTED-MEAN FILTER

Mean Filter:

The mean filter is a popular type of spatial filter used in image processing to remove noise and smooth
out an image. It works by taking the average of the pixel values within a given kernel or window and
replacing the central pixel with this average value. The size of the kernel determines the degree of
smoothing that is applied to the image. The mean filter is a type of linear filter because the output value
is a linear combination of the input values. The filter kernel is typically a square or rectangular matrix
of equal size to the kernel window. The mean filter is easy to implement and computationally efficient,
making it a popular choice for basic image processing tasks.

Weighted Mean Filter:

The weighted mean filter is a variation of the mean filter that assigns different weights to the pixel
values within the kernel window. The weights are based on a predefined kernel function that assigns
higher weights to the pixels closer to the centre of the kernel and lower weights to the pixels further
away from the centre. The weighted mean filter is also a type of linear filter because it calculates a
weighted average of the input pixel values. However, the weights are different for each pixel and are
based on the kernel function.

The advantage of using a weighted mean filter over a regular mean filter is that it can better preserve
edges and other fine details in the image, while still reducing noise and smoothing out the overall
image. The choice of kernel function and its parameters can have a significant impact on the output of
the filter, and the selection of the appropriate kernel function depends on the specific characteristics of
the image being processed.

CODE

%

MEAN FILTER

fprintf('please Select an image');

y:
i=

k=

uigetfile('*.*');
imread(y);

rgb2gray(i);

$j=imnoise(k, 'salt & pepper',0.1)

d

= padarray(k,[1 1],0, 'both');

[r,c]=size(d);

for R =2:(r-1)

for C=2:(c-1)
$if d(R,C)==255 || d(R,C)==0
v=[d(R,C) d(R,C+1) d(R,C-1) d(R+1,C) d(R+1,C-1) d(R+1,C+1) d(R-

1,C) d(R-1,C-1) d(R-1,C+1)7];

d(R,C)=mean(Vv);

$end

31 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

end
end
e=d(2:end-1,2:end-1); S%$removing padding
subplot(1l,2,1);imshow(k);title('Original Image');

subplot(1,2,2);imshow(e);title('smoothened image');

’ Live Editor - lmtltle(mix * :)))
| filterdesign.m | circle.mix | mean_filter donem | untitled.mix* L+ |
1 fprintf('please Select an image'); please Select an image "
il Ociginaimage :
4 k=rgb2gray(i);
5 %j=imnoise(k, 'salt & pepper',0.1)
6 d = padarray(k,[1 17,0, 'both");
7 [r,c]l=size(d);
8 for R =2:(r-1)
9 for C=2:(c-1)
10 %if d(R,C)==255 || d(R,C)==0
11 v=[d(R,C) d(R,C+1) d(R,C-1) d(R+ smoothened image
12 d(R,C)=mean(v);
13 %end
14 end
15 end
16 e=d(2:end-1,2:end-1); %removing padding
17 subplot(2,1,1);imshow(k);title('Origing
18 subplot(2,1,2);imshow(e);title('smoothe
»

Figure 1: use of mean() and imnoise() function in MATLAB

Original Image smoothened image

Figure 2: image smoothening using mean filter in MATLAB

32 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

CODE

X

% WEIGHTED MEAN FILTER

% Read the input image

inputImage imread('s.Jjpg"');
% Define the weights for the filter
weights = [1 5 1; 9 4 4; 7 2 91/42;

$ Apply the filter using imfilter
outputImage = imfilter (inputImage, weights);
% Display the input and output images side by side
subplot(1l,2,1);imshow(inputImage);title('Original Image');
subplot(1l,2,2);imshow(outputImage);title('smoothened image');

[] Live Editor - untitled3.mix *

@

X

| weighted_average.m Vwelgmed‘average,mam | untitled3.mix * a2
- E
1 % Read the input image Original Image &
2 inputImage = imread('2.jpg');
3 =
4 % Define the weights for the filter
5 weights = [1 5 1; 9 4 4; 7 2 9]/42;
6
i % Apply the filter using imfilter
8 outputImage = imfilter(inputImage, weights);
9
10 % Display the input and output images side by side smoothened image
11 subplot(2,1,1);imshow(inputImage);title('Original Image');
12 subplot(2,1,2);imshow(outputImage);title(' smoothened image');
13

3

Figure 3: use of imfilter() function in MATLAB

Original Image smoothened image

Figure 4: image smoothening using weighted mean filter in MATLAB

33 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

POWER LAW TRANFORMATION / GAMMA CORRECTION

Gamma Filter:

The Power law transformation, also known as gamma correction, is a type of image processing
technique that alters the intensity values of pixels in an image using a power function. The power
function can either increase or decrease the contrast of an image. In this technique, the image's pixel
values are raised to a certain exponent (power) that changes the distribution of pixel intensities. The
power function can be expressed as:

s=c*rity

Where s is the output pixel value, r is the input pixel value, y is the gamma value, and c is a scaling
constant. If the gamma value is less than 1, the resulting image will have increased contrast, making
the darker pixels appear lighter and the lighter pixels appear darker. If the gamma value is greater than
1, the resulting image will have decreased contrast, making the darker pixels appear even darker and
the lighter pixels even lighter.

Power law transformation is commonly used in image processing to correct for non-linearities in
images caused by the imaging system or to enhance image contrast for better visualization.

CODE

X

% WEIGHTED MEAN FILTER

fprintf('please Select an image');

yl=uigetfile('*.*"');

n=input('Please enter the value of gamma for Power law\n');

n=double(n);

J=imread(yl);

y2=rgb2gray(J);

y=double(y2);

o\

[)
<

y3=y./255;

o°
o°

y4=y3."n;

o°
o°

y5=y4.*255;

subplot(1l,2,1);imshow(y2);title('Original Image');

subplot(1,2,2);imshow(y5,[]);title('gamma corrected image');

34 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

B Live Editor - untitled4.mlx *
| class 4.txt | gamacorrectionm | untitled4.mix * |+ |

clc

clear all
close all

%% Origil &, & Q
fprintf('please Select an image'); K g
yl=uigetfile('*.*");

please Select an image

n=input('Please enter the value of gamma for Power law\n');
n=double(n);

J=imread(y1);

y2=rgb2gray(3);

y=double(y2);

%%

y3=y./255;

3%

y4=y3.4n;

9636

y5=y4,*255;

subplot(2,1,1);imshow(y2);title('Original Image');
subplot(2,1,2);imshow(y5,[]);title(gamma corrected image');

1 } ; 1
% subplot(1,2,2);imshow(y5,[]);title(gamma corrected image')

gamma cc&, {1 @, O}

% subplot(1,2,1);imshow(y2);title(Original Image');

) @ @)

Command Window

Please enter the value of gamma for Power law

2

fx >>

Figure 5: use of gamma filter in MATLAB

Original Image gamma corrected image
Fef-
F S
= S
o 3 » 1

Figure 6: image enhancement using gamma filter in MATLAB

IMAGE NEGATIVE

Negative Filter:

An image negative is an inverted version of an original image. In a negative image, the dark areas of
the original image appear light, and the light areas appear dark. This effect is achieved by reversing
the brightness and colour values of the original image. New intensity values are given as.

S = 255-

In medical imaging, negative images can be useful for highlighting certain features in an image. For
example, a negative image of a CT or MRI scan can be used to enhance the contrast between different
tissues or structures, making it easier for a medical professional to identify abnormalities or areas of
interest. Negative images can also be used in radiography to highlight the presence of foreign objects,

35 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

CcO

o

X

such as metal or glass, that may be difficult to see in a regular X-ray image. In these cases, the negative
image can help to differentiate the foreign object from surrounding tissue or bone. Additionally,
negative images can be useful for enhancing the visibility of certain types of medical images, such as
angiograms or mammograms. By creating a negative image, it is possible to enhance the contrast
between blood vessels or breast tissue and background structures, making it easier to identify potential
abnormalities.

DE

s NEGATIVE FILTER

fprintf('please Select an image');

y=uigetfile('*.*"');

i=imread(y);

j=rgb2gray(i);

[r,cl=size(]);

newimg=255-1;

subplot(1l,2,1);imshow(i);title('Original Image');

subplot(1l,2,2);imshow(newimg);title('image negative');

0N OV AR WN R

| class 4.bct | untitled4.mix * \ negative._done.m \ + ‘|

B Live Editor - untitled4.mix *

af] (o] (&)

fprintf('please Select an image'); please Select an image
y=uigetfile('*.*");

i=imread(y);

j=rgb2gray(i);

[r,cl=size(]);

newimg=255-1ij;
subplot(1,2,1);imshow(i);title(Original Image');

Original Image
subplot(1,2,2);imshow(newimg);title('image negative');|

image negative
BN

» -

Figure 7: use of image negative filter in MATLAB

Original Image image negative

Figure 8: image enhancement using gamma filter in MATLAB

36 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

BIT PLANE SLICING

Bit Plane Slicing:

Bit plane slicing is a digital image processing technique used to separate the binary components of an
image by extracting each bit plane. In digital imaging, each pixel in an image is represented by a binary
code that can be divided into multiple bits. By using bit plane slicing, we can isolate each bit of the
binary code, which results in a series of binary images. These binary images represent the contribution
of each bit to the original image. For example, in an 8-bit grayscale image, the pixel values range from
0 to 255. We can slice the image into eight-bit planes, where the first bit plane represents the least
significant bit (LSB) and the eighth bit plane represents the most significant bit (MSB). The MSB is
the most important bit as it has the highest weight and contributes the most to the final pixel value.
Each bit plane can be visualized as a binary image, where black pixels represent the bits that have a
value of 0, and white pixels represent the bits that have a value of 1. By displaying each bit plane
individually or in combination with other bit planes, we can enhance different features of the original
image. For instance, the first bit plane would highlight the noise in the image, while the higher bit
planes can help us to focus on the edges and details of the image.

Bit plane slicing is used in various applications such as image compression, feature extraction, and
image enhancement.

CODE

\°

Cl

BIT PLANE SLICING

fprintf('please Select an image');

y:

i=

[)
<

uigetfile('*.x');
imread(y);

Convert image to grayscale

if size(i, 3) ==

image = rgb2gray(i);

end

%

Extract bit planes

bit planes = zeros(size(image, 1), size(image, 2), 8);

for 1 = 1:8

bit planes(:,:,1) = bitget(image, 1);

end

%

Display bit planes

37 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

figure;
for 1 = 1:8
subplot (2, 4, 1i);
imshow(bit planes(:,:,1i), []);

title(['Bit plane ', num2str(i)]);

=| Live Editor - untitled4.mix * ™ x

class 4.txt untitled4.mbx * bitplane_slicing.m +
&
1 fprintf('please Select an image'); please Select an image =]
2 y=uigetfile('*.%");
3 i=imread(y); [&]
4 % Convert image to grayscale Bit plane 1 Bit plane 2 Bit plane 3 Bit plane 4
5 if size(i, 3) == : B ' : ‘
6 image = rgb2gray(i);
7 end
8
9 % Extract bit planes
10 bit_planes = zeros(size(image, 1), size(image, 2), 8);
11 for i = 1:8
12 bit_planes(:,:,i) = bitget(image, i);
13 end
14
= Su=plavabizgnlenes Bit plane 6 Bit plane 7 Bit plane 8
16 Hres . .
17 for i = 1:8
18 subplot(2, 4, i);
19 imshow(bit_planes(:,:,1), [1);
20 title(['Bit plane ', num2str(i)]);
21 end
27

Figure 9: use of image bit slicing in MATLAB

Bit plane 1 Bit plane 2 Bit plane 3 Bit plane 4

Bit plane 5 Bit plane 7 Bit plane 8

ey

Figure 10: 8 bit sliced image in MATLAB

38 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

CONTRAST STRETCHING

Contrast stretching:

Contrast stretching is a technique used in image processing to enhance the contrast of an image. The
technique works by expanding the dynamic range of the image so that the brightest and darkest pixels
are spread over the entire range of pixel values, thus increasing the contrast. The process involves
finding the minimum and maximum pixel values in the image, and then mapping the values in between
to a new range. This new range is typically the full range of values that the image can represent, such
as 0 to 255 for an 8-bit grayscale image. There are several methods for implementing contrast
stretching, including linear stretching, piecewise linear stretching, and histogram equalization. Linear
stretching involves simply scaling the pixel values between the minimum and maximum values to fill
the entire range. Piecewise linear stretching involves dividing the range into several segments and
applying a linear function to each segment. Histogram equalization involves mapping the histogram
of the image to a uniform distribution. Contrast stretching is a useful technique for enhancing the
visibility of details in an image, particularly when the contrast is low. However, it can also lead to
artifacts and noise amplification if not applied carefully. Therefore, it is important to choose an
appropriate method and parameter settings for each specific image.

CODE

%

CONTRAST STRETCHING

im=imread("Xray share.jpg");

img=rgb2gray(im);

=

double (img);

x=[0 40 150 2507;

y:

[0 90 170 2007];

plot(x,y);

[rows,columns]=size(I);

for r=1l:rows

for c=l:columns
if I(r,c)<x(2)
I(r,c)=(y(2)/%(2))*r;
elseif I(r,c)>=x(2) && I(r,c)<x(3)
I(r,c)=((y(3)-y(2))/(x(3)-x(2)))*(r-x(2));
else
I(r,c)=((y(4)-y(3))/(x(4)-%(3)))*(r-x(3));
end

39 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

end
end

figure,

imshow(I);

' Live Editor - untitled4.mlx *
class 4.txt untitled4.mix * bitplane_slicing.m +
E
1 im=imread("Xray_share.jpg");
T 00
2 img=rgb2gray(im); 2 &l
3 I-double(img); 180
4 x=[0 40 150 250];
5 y=[@ 90 170 200]; 160
6
7 plot(x,y); 140
8 [rows, columns]=size(I);
9 120
1e for r=1:rows
11 for c=1:columns 100
12 i I(r,c)<x(2)
13 I(r,c)=(y(2)/x(2))*r; a0
14 elseif I(r,c)>=x(2) && I(r,c)<x(3)
15 I(r, c)=((y(3)-y(2) 1/ (x(3)-%(2)))*(r-x(2)); 60
16 else
17 I(r,)= ((y(4)-¥(3))/ (x(4) x(3))*(r-x(3)); 40
18 end .
19 end 200/
20 end 0 L L s
2l figure, 0 50 100 150 200 250
22 imshow(I);
e T A -

Figure 11: use of contrast stretching in MATLAB
MIN AND MAX FILTER

Min and Max filter:

In image processing, a min filter (also known as erosion) is an operation that replaces each pixel in an
image with the minimum value of its neighbouring pixels, using a kernel or structuring element. The
result is an image that has had small features or details removed, effectively shrinking the image. On
the other hand, a max filter (also known as dilation) replaces each pixel in an image with the maximum
value of its neighbouring pixels. This operation has the opposite effect of the min filter, and can be
used to enhance or highlight the edges and boundaries in an image.

Both min and max filters are used in image processing for various purposes, such as noise reduction,
feature extraction, and object detection. They can be applied to grayscale as well as colour images.
The size and shape of the kernel or structuring element used for the filtering process determines the
degree of smoothing or sharpening in the resulting image..

CODE

()

s MIN FILTER

\

fprintf('please Select an image');
y=uigetfile('*.*"');

i=imread(y);

k=rgb2gray(1i);

j=imnoise(k, 'salt & pepper',0.1);

40 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

d = padarray(j,[1l 11,0, 'both');
[r,c]l=size(d);

for R =2:(r-1)

for C=2:(c-1)
if d(R,C)>=250
v=[d(R,C) d(R,C+1) d(R,C-1) d(R+1,C) d(R+1,C-1) d(R+1,C+1l) d(R-
1,C) d(R-1,C-1) d(R-1,C+1)];

d(R,C)=min(v);
end
end

end
e=d(2:end-1,2:end-1); %removing padding
subplot(1l,3,1);imshow(i);title('Original Image');
subplot(1,3,2);imshow(j);title('salt and pepper noised');
subplot(1l,3,3);imshow(e);title('salt removed');

B Live Editor - untitled4.mlx *

| class 4.t 4| untitled4.mix * \ bitplane_slicing.m | median_filter_done.m | min_filter.m |+ |
E
1 fprintf('please Select an image'); please Select an image
2 y=uigetfile('*.%');
3 i=imread(y); [#
4 k=rgb2gray(i);
5 j=imnoise(k, 'salt & pepper',8.1);
6 d = padarray(5,[1 11,0, 'both');
7 [r,cl=size(d);
8 for R =2:(r-1)
9 for C=2:(c-1)
1e if d(R,C)>=258 Original Image
11 v=[d(R,C) d(R,C+1) d(R,C-1) d(R+1,C) d(R+1,C-1) d(R+1,C+1) d(R-1,C)
12 d(R,C)=min(v);
13 end
14 end i
15 end h o
16 e=d(2:end-1,2:end-1); %removing padding
17 subplot(1,3,1);imshow(i);title('Original Image');
18 subplot(1,3,2);imshow(j);title('salt and pepper noised');
19 subplot(1,3,3);imshow(e);title('salt removed');
28
21 %kam kar raha hai

Figure 12: use of min() function for making min filter in MATLAB

Original Image

salt and pepper noised salt removed

Figure 13: min filter in MATLAB is able to filter only salt noise.

41 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

CODE

% MAX FILTER
fprintf('please Select an image');
y=uigetfile('*.*"');
i=imread(y);
k=rgb2gray(i);
j=imnoise(k, 'salt & pepper',0.1);
d = padarray(j,[1l 11,0, 'both');
[r,c]=size(d);
for R =2:(r-1)

for C=2:(c-1)

if d(R,C)<=10

v=[d(R,C) d(R,C+1l) d(R,C-1) d(R+1,C) d(R+1,C-1) d(R+1,C+1) d(R-
1,C) d(R-1,C-1) d(R-1,C+1)7;

d(R,C)=max(vVv);
end
end

end
e=d(2:end-1,2:end-1); S%$removing padding
subplot(1,3,1);imshow(i);title('Original Image');
subplot(1l,3,2);imshow(j);title('salt and pepper noised');
subplot(1l,3,3);imshow(e);title('pepper removed');

B Live Editor - untitled8.mix * @ x
class 4.txt | bitplane_slicing.m median_filter_done.m | min_filterm | max_filterm | untitled7 untitled8.mix * +
&
1 fprintf('please Select an image'); please Select an image E
2 y=uigetfile('*.*"); =
3 i=imread(y); [=]
4 k=rgb2gray(i);
5 j=imnoise(k, 'salt & pepper',0.1);
6 d = padarray(j,[1 1],0, 'both');
7 [r,c]=size(d);
8 for R =2:(r-1)
9 for C=2:(c-1) Original Image salt and pepper noised _ pepper removed
10 if d(R,C)<=10 ~‘ ?- R
11 v=[d(R,C) d(R,C+1) d(R,C-1) d(R+1,C) d(R+1,
12 d(R,C)=max(v);
13 end
14 end
15 end
16 e=d(2:end-1,2:end-1); %removing padding y
17 subplot(1,3,1);imshow(i);title('Original Image');
18 subplot(1,3,2);imshow(j);title('salt and pepper nc
19 subplot(1,3,3);imshow(e);title("pepper removed');
20
21 %kam kar raha hai

»

Figure 14: use of max() function for making max filter in MATLAB

42 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

pepper removed

o

Original Image

salt and pepper noised

Figure 15: max filter in MATLAB is able to filter only pepper noise.
MEDIAN FILTER

Min and Max filter:

A median filter is a digital signal processing technique used to remove noise from a signal or an image.
It works by replacing each pixel's value with the median value of its neighbouring pixels. The process
of median filtering involves sliding a window (typically a square or rectangular shape) over the input
signal or image. For each pixel within the window, the median value of the pixel's neighbourhood is
calculated and used as the new value for that pixel. The size of the window determines the extent of
smoothing applied to the signal or image.

Median filtering is commonly used in image processing to remove salt and pepper noise, which appears
as random black and white pixels in an image. The median filter can effectively remove this type of
noise without blurring or distorting the image's edges and details, making it a popular choice for image
denoising.

CODE

% MEDIAN FILTER
fprintf('please Select an image');
y=uigetfile('*.*"');
i=imread(y);
k=rgb2gray(i);
j=imnoise(k, 'salt & pepper',0.1);
d = padarray(j,[1l 11,0, 'both');
[r,c]=size(d);
for R =2:(r-1)

for C=2:(c-1)

$if d(R,C)==255 || d(R,C)==0
v=[d(R,C) d(R,C+1) d(R,C-1) d(R+1,C) d(R+1,C-1) d(R+1,C+1) d(R-

1,C) d(R-1,C-1) d(R-1,C+1)];
d(R,C)=median(v);

43 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

send
end
end
e=d(2:end-1,2:end-1);
subplot(1,3,1);imshow(i);title('Original Image');

$removing padding

subplot(1,3,2);imshow(j);title('salt and pepper noised');

subplot(1,3,3);imshow(e);title('noised removed');

B Live Editor - untitled8.mix *
\’ class 4.txt \ bitplane_slicing.m \ median_filter_done.m \ untitled8.mix * | +}
(E4)
1 fprintf('please Select an image'); please Select an image E
2 y=uigetfile('*.*"); =
3 i=imread(y); &
4 k=rgb2gray(i);
5 j=imnoise(k, 'salt & pepper',0.1);
6 d = padarray(j,[1 1],0, both");
7 [r,cl=size(d);
8 for R =2:(r-1)
9 for C=2:(c-1)
10 %if d(R,C)==255 || d(R,C)==0
11 v=[d(R,C) d(R,C+1) d(R,C-1) d(R+1,C) d(R+1,C-1) d(R+1,C+1) d(H
12 d(R,C)=median(v); Original Image salt and pepper noised noised removed
13 %end -
14 end
15 end
16 e=d(2:end-1,2:end-1); %removing padding
17 subplot(1,3,1);imshow(i);title('Original Image');
18 subplot(1,3,2);imshow(j);title('salt and pepper noised');
19 subplot(1,3,3);imshow(e);title('noised removed');
20
21 %kam kar raha hai
»

Figure 16: use of median() function for making median filter in MATLAB

Original Image noised removed

Figure 17: median filter in MATLAB is able to filter both salt and pepper noise.

Shreenandan Sahu |[120BM0806

44 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

LLab Report5

Aim
To apply frequency domain filters for image enhancement in MATLAB.

Theory

In image processing, frequency domain filters are used to modify or enhance the frequency content of an
image. An image can be represented in the frequency domain using the Fourier transform, which
decomposes the image into its constituent frequencies. Frequency domain filters in image processing can
be broadly classified into two categories: low-pass filters and high-pass filters. Low-pass filters attenuate
high-frequency components in the image, while high-pass filters attenuate low-frequency components.
Low-pass filters are commonly used in image smoothing, where they are used to remove high-frequency
noise from the image while preserving the lower-frequency content. The most common type of low-pass
filter used in image processing is the Gaussian filter, which attenuates high-frequency components
according to a Gaussian distribution. High-pass filters, on the other hand, are used to enhance the high-
frequency content in an image, making the edges and details of the image more visible. Commonly used
high-pass filters in image processing include the Laplacian filter, the Sobel filter, and the Canny filter.
Other types of frequency domain filters used in image processing include band-pass filters, which allow a
certain range of frequencies to pass through while attenuating other frequencies, and band-stop filters,
which attenuate a certain range of frequencies while passing other frequencies. Frequency domain filters
in image processing are useful in a wide range of applications, including medical imaging, remote sensing,
and industrial inspection, where image quality is critical and noise or interference can have a significant
impact on the results.

LOW PASS AND HIGH PASS FILTER

Low Pass Filter:

In image processing, low-pass filters are used to remove high-frequency noise and to smooth images by
attenuating high-frequency components while preserving low-frequency components. The most common
type of low-pass filter used in image processing is the Gaussian filter. The Gaussian filter is a frequency
domain filter that attenuates high-frequency components according to a Gaussian distribution. It is a
popular choice for image smoothing because it has a simple mathematical form, is easy to implement,
and produces visually pleasing results. The Gaussian filter works by convolving the image with a
Gaussian kernel, which is a two-dimensional bell-shaped curve centred at the origin. The size of the kernel
and the standard deviation of the Gaussian distribution determine the degree of smoothing and the amount
of detail preserved in the image. Another commonly used low-pass filter in image processing is the mean
filter, which replaces each pixel in the image with the average of its neighbouring pixels. The size of the
neighbourhood or the window used for averaging determines the degree of smoothing, with larger
neighbourhoods resulting in greater smoothing and more detail loss. Low-pass filters in image processing
can be used to reduce noise, blur, or hide details in an image. They are commonly used in applications
such as image denoising, feature extraction, and image segmentation. It is important to note that excessive
smoothing can result in loss of important details and edges in the image. Therefore, the choice of the filter

45 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

and the parameters used for filtering should be carefully tuned to achieve the desired level of smoothing
while preserving important features in the image.

High Pass Filter:

In image processing, high-pass filters are used to enhance the high-frequency content of an image by
attenuating the low-frequency components. High-pass filters are commonly used for edge detection and
sharpening of images. The most common type of high-pass filter used in image processing is the Laplacian
filter. The Laplacian filter enhances edges and details in an image by detecting areas where the brightness
changes rapidly. It does this by convolving the image with the second derivative of the Gaussian function,
which is a measure of the rate of change of the image intensity. Another commonly used high-pass filter
is the Sobel filter, which is used for edge detection in images. The Sobel filter works by computing the
gradient of the image intensity in the x and y directions, and then combining these gradients to obtain a
measure of the edge strength. Other types of high-pass filters used in image processing include the Prewitt
filter, the Roberts cross filter, and the Canny filter. Each of these filters has its own advantages and
disadvantages, and the choice of filter depends on the specific application and the desired outcome. High-
pass filters can be useful in a wide range of applications, including medical imaging, industrial inspection,
and remote sensing, where image detail and clarity are critical. However, it is important to note that
excessive filtering can result in the loss of important image information, such as subtle details and
textures. Therefore, the choice of filter and the parameters used for filtering should be carefully tuned to
achieve the desired level of enhancement while preserving important image features.

CODE

% LOW PASS FILTER

fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*');
j=imread (i)
k=rgb2gray(J);
imshow (k)
[r,c]=size(k)
1=fft2(k);
m=fftshift(1l);
n=abs(m) ;
o=log(1l+n);
imshow(o,[]);

Z=zeros(r,c);

for R=1l:r
for C=1l:c
if (R-r/2)"2+(C-c/2)"2 <= 5072

Z(R,C)=1;

46 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

end

end
end
imshow(2)
new=m.*Z;
newl=fftshift (new);
new2=1fft2 (newl);
imshow(abs(new2),[]);
edge=abs (new2) ;
sharp=double (k)+edge;

imshow(sharp,[]);

‘ Live Editor - E\image procesing lab\class 5\lowpassfilter.mlx *
gaussianhpf.mlx * bandpass.mix lowpassfilter.mlx * highpass.mlx * +
g m=Fftshift(1); -
9 n=abs(m);

10 o=log(1+n);

11 imshow(o,[]);

12 Z=zeros(r,c);

13 for R=1:r

14 for C=1:c

15 if (R-r/2)*2+(C-c/2)"2 <= 50"2
16

17 Z(R,C)=1;
18

19 end

20 end

21 end

22

23

24 imshow(Z)

25 new=m.*Z;

26 newl=fftshift(new);
27 new2=ifft2(newl);

28 imshow(abs(new2),[]);
29 edge=abs(new2);

30 sharp=double(k)+edge;
31 imshow(sharp,[]);

32

33

Figure 1: use of low pass filter to smoothen image in MATLAB

Original Image Blured Image

Figure 2: image smoothening using low pass filter in MATLAB

47 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

CODE

% HIGH PASS FILTER
fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*x');
j=imread (i)
k=rgb2gray(j);
imshow (k)
[r,c]=size(k)
1=£fft2 (k);
m=fftshift(1l);
n=abs (m) ;
o=log(l+n);
imshow(o,[]);
Z=zeros(r,c);

for R=1l:r

for C=1l:c

if (R-r/2)"2+(C-c/2)"2 >= 5072

Z(R,C)=1;

end

end

end

imshow(2)

new=m.*Z7Z;
newl=fftshift (new);
new2=1fft2 (newl);
imshow(abs(new2),[]);
edge=abs (new2) ;
sharp=double (k)+edge;

imshow(sharp,[]);

48 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

H Live Editor - E\image procesing lab\class 5\highpass.mlx *

gaussianhpf.mix * bandpass.mix lowpassfilter.mix highpass.mlx * ahcibhsvycghivchiuwhcojwv.m +

0N W N

fprintf("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*");

J=imread(i)

k=rgb2gray(j);

imshow (k)
[r,c]l=size(k)
1=fft2(k);
m=Fftshift(l);
n=abs(m);
o=log(1+n);
imshow(o,[]);
Z=zeros(r,c);
for R=1:r

for C=1:c

if (R-r/2)72+(C-c/2)"2 >= 50°2

Z(R,C)=1;

imshow(Z)
new=m.*Z;

e 6 R BB e o o

4 »

Figure 3: use of high pass filter to detect the edges in MATLAB

Edges Image

Figure 4: image edge detection using high pass filter in MATLAB

GAUSSIAN FILTERS

Gaussian Filter:

A Gaussian filter is a popular image processing technique used for smoothing or blurring an image by
reducing the high-frequency components in the image. The filter is based on the Gaussian function,
which is a bell-shaped curve that describes the probability distribution of a random variable.

In image processing, the Gaussian filter works by convolving each pixel of the image with a 2D
Gaussian kernel, which is a matrix of values that represents the Gaussian function. The kernel size and
standard deviation of the Gaussian function can be adjusted to control the amount of smoothing applied
to the image.

49 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

The Gaussian filter is commonly used in applications such as noise reduction, edge detection, and
feature extraction. It is particularly useful for removing high-frequency noise from an image while
preserving the edges and other important details.

Overall, the Gaussian filter is a simple and effective way to enhance the visual quality of images in a
variety of applications.

CODE

\

% GAUSSIAN HIGH PASS FILTER

fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*"');
j=imread (i)
k=rgb2gray(j);
imshow (k)
[r,c]l=size(k)
1=fft2 (k);
m=fftshift(1l);
n=abs (m) ;
o=log(l+n);
imshow(o,[]);

Z=zeros(r,c);

d0=5;
for R=1l:r
for C=1l:c
d=sqrt((R-(xr/2))"2+(C-(c/2))"2);
Z(R,C)=l-exp(-(d"2)/(2*(d0)"2));
end
end

imshow(2)

new=m.*7;
newl=fftshift (new);
new2=1fft2 (newl);
imshow(abs(new2),[]);

edge=abs (new2) ;

50 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

sharp=double (k)+edge;
subplot(1l,2,1); imshow(sharp,[]); title('Sharpened Image');

subplot(1,2,2); imshow(k,[]); title('Original Image');

) Live Editor - E\image r'::cesing lab\class 5‘-‘_gaussinhpfml;«:
| | gaussianhpf.mix | gaussianipf.mix |+ |

1 fprintf("PLEASE SELECT AN IMAGE\n")

2 izuigetfile('*.*");

3 j=imread(i)

4 k=rgb2gray(3j);

5 imshow(k)

6 [r,c]l=size(k)

7 1=Ffft2(k);

8 m=fftshift(l);

9 n=abs(m) ;
10 o=log(1+n); .
11 imshow(o,[]);
12 Z=zeros(r,c);
13 de=5;
14 for R=1:r
15 for C=1:c
16 d=sgrt((R-(r/2))*2+(C-(c/2))"2);
17 Z(R,C)=1-exp(-(d~2)/(2*%(de)~2));
18 end
19 end
20
21
22 imshow(Z)
23 naw=m *7- , h .

Figure 5: use of gaussian high pass filter in MATLAB

Original Image

i .‘ 4 - . . '/. ? -
» . ', 3 |‘ e 4 ./’ -
IS s \
. ’ / S 7
. .. . 4
. . L - 4 4

Figure 6: image processing using high pass filter in MATLAB
CODE

X

% GAUSSIAN LOW PASS FILTER

51 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*');
j=imread (i)
k=rgb2gray(Jj);
imshow (k)
[r,c]=size(k)
1=fft2(k);
m=fftshift(1l);
n=abs (m) ;
o=log(l+n);
imshow(o,[]);

Z=zeros(r,c);

d0=50;
for R=1l:r
for C=1l:c
d=sqrt((R-(xr/2))"2+(C-(c/2))"2);
Z(R,C)=exp(-(d*2)/(2%(d0)"2));
end
end
imshow (Z)

new=m.*Z7Z;

newl=fftshift (new);

new2=1fft2 (newl);

imshow(abs(new2),[]);

edge=abs (new2) ;

sharp=double (k)+edge;

subplot(1l,2,1); imshow(sharp,[]); title('Sharpened Image');

subplot(1l,2,2); imshow(k,[]); title('Original Image');

52 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

' Live Editor - E\image procesing lab\class 5\gaussianlpf.mlx

| gaussianlpf.mix | + |
1 fprintf("PLEASE SELECT AN IMAGE\n")
2 i=uigetfile('*.*');
3 j=imread(i)
4 k=rgb2gray(j);
5 imshow(k)
6 [r,c]=size(k)
7 1=ffta(k);
8 m=Fftshift(l);
9 n=abs(m);
18 o=log(1+n);
11 imshow(o,[]);
12 Z=zeros(r,c);
13 do-50;
14 for R=1:r
15 for C=1:c
16 d=sqrt((R-{r/2))"2+(C-(c/2))"2);
17 Z(R,C)=exp(-(d"2)/(2%(de)"2));
18 end
19 end
20
21
22 imshow(Z)
23 new=m. *7;
24 newl=fftshift(new);
25 new2=ifft2(newl);
26 imshow(abs(new2),[]);
27 edge=abs(new2);
28 sharp=double(k)+edge; .
29 b+ 1 2 AV Smcrhenaf rlhamn TTIV Y 43+ T A Tl Ad Tema~atN
» -

= QDY A Y kAT P T ATV
% ".")\\'/‘ {}/{,f//-’, / . o | &K)/ /f/ji»/ri(= e

Figure 7: use of gaussian high low filter in MATLAB

blured Image Original Image

\
<

_/‘.

R

Figure 8: image procesing using gaussian low pass filter in MATLAB

BAND FILTER

Band Pass and Band Reject Filter:

In image processing, a band-pass filter is a type of filter that allows a specific range of frequencies to
pass through while attenuating (reducing) frequencies outside that range. Similarly, a band-reject filter,
also known as a notch filter, attenuates a specific range of frequencies while allowing frequencies
outside that range to pass through.

53 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

A band-pass filter is often used to extract certain features or details from an image that exist in a
particular frequency range. For example, a band-pass filter may be used to enhance the edges or texture
of an image, or to remove certain types of noise that exist in a specific frequency range.

A band-reject filter, on the other hand, is often used to remove unwanted features or artifacts from an
image. For example, a band-reject filter may be used to remove periodic noise or interference that exists
in a certain frequency range.

Both band-pass and band-reject filters can be implemented using a variety of techniques, such as Fourier
transforms or digital signal processing algorithms. The specific parameters of the filter, such as the
cutoff frequencies or filter order, can be adjusted to achieve the desired filtering effect.

CODE

X

% BAND PASS FILTER

fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*"');
j=imread (i)
k=rgb2gray(Jj);
imshow (k)
[r,c]=size(k)
1=fft2(k);
m=fftshift(1l);
n=abs (m) ;
o=log(l+n);
imshow(o,[]1);
Z=zeros(r,c);
for R=1l:r

for C=1l:c

if (R-r/2)%2+(C-c/2)"2 >= 20”2
if (R-r/2)"2+(C-c/2)"2 <= 40”2
Z(R,C)=1;
end
end
end

end

54 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

imshow (Z)

new=m.*Z7Z;
newl=fftshift (new);
new2=1fft2 (newl);
imshow(abs(new2),[]);
edge=abs (new2) ;
sharp=double (k) +tedge;

imshow(sharp,[]);

|=| Live Editor - E\image procesing lab\class 5\bandpass.mix ®

X

bandpass.mix bandreject.mix butterworthHPF.mix butterworthLPF.mix +

»

fprintf("PLEASE SELECT AN IMAGE\n")

1 —
2 i=uigetfile('*.*"); 5]
3 j=imread(i) =
4 k=rgb2gray(j);
5 imshow(k)
6 [r,c]=size(k)
7 1=fft2(k);
8 m=fftshift(l);
9 n=abs(m);
10 o=log(1+n);
11 imshow(o,[]);
12 Z=zeros(r,c);
13 for R=1:r
14 for C=1:c
15 if (R-r/2)72+(C-c/2)72 >= 2072
16 if (R-r/2)72+(C-c/2)"2 <= 4072
17 Z(R,C)=1;
18 end
19 end
20 end
21 end
22
23
24 imshow(Z)
25 new=m.*Z;
26 newl=fftshift(new);
27 new2=ifft2(newl);
28 imshow(abs(new2),[1);
29 edge=abs(new2); = =
Figure 9: use of image band pass filter in MATLAB
Figure 10: image processing using band pass filter in MATLAB
CODE

55 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

\

% BAND REJECT FILTER

fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*');
j=imread (i)
k=rgb2gray(Jj);
imshow (k)
[r,c]=size(k)
1=fft2(k);
m=fftshift(1l);
n=abs (m) ;
o=log(l+n);
imshow(o,[]);
Z=ones(r,c);
for R=1l:r

for C=1l:c

if (R-xr/2)"2+(C-c/2)"2 >= 40”2
if (R-r/2)"2+(C-c/2)"2 <= 8072
Z(R,C)=0;
end
end
end

end

imshow(2)

new=m.*7;
newl=fftshift (new);
new2=1fft2 (newl);
imshow(abs (new2),[]);
edge=abs (new2) ;
sharp=double (k)+edge;

imshow(sharp,[]);

56 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

B Live Editor - E\image procesing lab\class 5\bandreject.mix
[bandrejectmix | butterworthHPF.mlx * | butterworthlPEmix » | + |
3! fpr‘intf("PLEASE SELECT AN IMAGE\n")
2 i=uigetfile('*.*');
3 j=imread(i)
4 k=rgb2gray(j);
5 imshow(k)
6 [r,c]=size(k)
7 1=Fft2(k);
8 m=fftshift(1l);
9 n=abs(m);
10 o=log(1+n);
11 imshow(o,[]);
12 Z=ones(r,c);
13 foroR=1:r
14 for C=1:c
15 if (R-r/2)A24(C-c/2)"2 >= 4072
16 if (R-r/2)72+(C-c/2)"2 <= 8072
17 Z(R,C)=0;
18 end
19 end
20 end
21 end
22
23
24 imshow(Z)
25 new=m. *Z;
26 newl=fftshift(new);
27 new2=ifft2(newl);
28 imshow(abs(new2),[]);
29 edge=abs(new2); = =

Figure 12: image processing using band reject filter in MATLAB

BUTTER WORTH FILTERS

Butter Worth High and Low pass filter:

A Butterworth filter is a type of digital filter used in image processing to enhance or suppress certain
frequency components in an image. It is a low-pass filter that is designed to allow low-frequency
components to pass through while attenuating high-frequency components. The filter is named after
the British engineer and physicist Stephen Butterworth, who developed it in the 1930s. It is widely
used in image processing applications such as image smoothing, noise reduction, and edge detection.

57 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

The Butterworth filter is designed based on a specific order and cut-off frequency. The order of the
filter determines how sharply the filter cuts off the high-frequency components. The cut-off frequency
is the frequency at which the filter begins to attenuate the high-frequency components. In image
processing, the Butterworth filter can be applied to the Fourier transform of an image, which represents
the image's frequency content. The filter's cut-off frequency and order can be chosen based on the
specific application requirements. The Butterworth filter has several advantages over other types of
filters, including its smooth transition between passband and stopband, and its ability to attenuate high-
frequency noise without affecting the image's edges. However, it can also introduce ringing artifacts
and may not be suitable for all types of image processing applications. Overall, the Butterworth filter
is a useful tool in image processing for selectively enhancing or suppressing frequency components in
an image, and its specific design parameters can be adjusted to achieve the desired results.

CODE

% BUTTER WORTH LOW PASS FILTER

fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*x');
j=imread (i)
k=rgb2gray(j);
imshow (k)
[r,c]l=size(k)
1=fft2(k);
m=fftshift(1l);
n=abs (m) ;
o=log(l+n);
imshow(o,[]);
Z=ones(r,c);
d0=100;
n=10;
for R=1l:r
for C=1l:c
d=sqrt ((R-(r/2))"2+(C-(c/2))"2);
Z(R,C)=1/(1+(d/d0)"(2*n));
end

end

imshow (Z)

58 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

new=m.*Z7Z;
newl=fftshift (new);
new2=1fft2 (newl);
imshow(abs(new2),[]);
edge=abs (new2) ;
sharp=double (k)+edge;

imshow(sharp,[]);

B Live Editor - E\image procesing lab\class 5\butterworthLPF.mix
| butterworthHPF.mlx | butterworthLPF.mix | + |
il fprintf("PLEASE SELECT AN IMAGE\n")
2 i=uigetfile('*.*");
3 j=imread(i)
4 k=rgb2gray(j);
5 imshow(k)
6 [r,c]=size(k)
7 1=fft2(k);
8 m=fftshift(1l);
9 n=abs(m);|
10 o=log(1+n);
11 imshow(o,[]);
12 Z=ones(r,c);
13 do=100;
14 n=10;
15 for R=1:r
16 for C=1:c
17 d=sqrt((R-(r/2))"2+(C-(c/2))"2);
18 Z(R,C)=1/(1+(d/d@)~(2*n));
19 end - .
20 end AR
21
22 B
23 imshow(Z)
24 new=m. *Z; 4 :
25 newl=fftshift(new); 3 e o
26 new2=ifft2(newl); < £ 3 .'.'; =
27 imshow(abs(new2),[]); 55 - -
28 edge=abs(new2);
29 sharp=double(k)+edge; < .

Figure 13

Figure 14: image processing butter worth low pass filter MATLAB

59 |

Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

CODE

% BUTTER WORTH HIGH PASS FILTER

fprintf ("PLEASE SELECT AN IMAGE\n")
i=uigetfile('*.*x');
j=imread (i)
k=rgb2gray(j);
imshow (k)
[r,c]=size(k)
1=fft2 (k);
m=fftshift(1l);
n=abs (m) ;
o=log(l+n);
imshow(o,[]);

Z=zeros(r,c);

d0=20;
n=2;
for R=1l:r
for C=1l:c
d=sqrt((R-(xr/2))"2+(C-(c/2))"2);
Z(R,C)=1/(1+(d0/d)"(2*n));
end
end
imshow (Z2)

new=m.*Z7Z;

newl=fftshift (new);

new2=1fft2 (newl);

imshow(abs (new2),[]);

edge=abs (new2) ;

sharp=double (k)+edge;

subplot(1l,2,1); imshow(sharp,[]); title('Sharpened Image');

subplot(1,2,2); imshow(k,[]); title('Original Image');

60 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

' Live Editor - E\image procesing lab\class 5\butterworthHPF.mlx

butterworthLPF.mlx butterworthHPF.mlx +

1 fprintf{"PLEASE SELECT AN IMAGE\n")
2 i=uigettile('=.%");

3 j=imread(1i)

4 k=rgb2gray(J);

5 imshow(k)

6 [ryc]l=size(k)

7 1=fft2(k);

8 m=fftshift(l);

9 n=abs(m);
10 o=log(1+n);
11 imshow(o,[]1);
12 Z=zeros(r,c);
13 de=20;
14 n=2;
15 for R=1:r
16 for C=1:c
17 d=sqrt((R-(r/2))~2+(C-(c/2))"2);
18 Z(R,C)=1/(1+(d@/d)~(2*n));
19 end
20 end
21
22
23 imshow(Z)
24 news=m. *7;
25 newl=fftshift(new);
26 new2=ifft2(newl);
27 imshow(abs(new2),[1);
28 edge=abs(new2);
29 rhamn AT A A Adra

Figure 15: use of butter worth high pass filter in MATLAB

Figure 16: image processing butter worth high pass filter MATLAB

Shreenandan Sahu [120BM0806

61 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

LLab Report 6

Aim
Using different mean filters for removal of noise in MATLAB.

Theory

Different mean filters can be used to remove noise from an image. The most common types of mean filters
are the arithmetic mean filter, geometric mean filter, and harmonic mean filter.

Arithmetic mean filter: This filter replaces each pixel with the average value of the neighboring pixels. It is
a simple and effective filter for removing random noise. However, it can blur edges and reduce image details.

Geometric mean filter: This filter replaces each pixel with the geometric mean of the neighboring pixels. It
is effective at removing multiplicative noise, such as speckle noise in ultrasound or radar images. However, it
can also blur the image if the kernel size is too large.

Harmonic mean filter: This filter replaces each pixel with the harmonic mean of the neighboring pixels. It is
effective at removing salt-and-pepper noise and preserving edges, but it can produce artifacts in uniform areas
of the image.

Alpha-trimmed mean filter: This filter removes a certain percentage of the highest and lowest pixel values
in the neighbourhood before calculating the mean. It is effective at removing impulse noise and preserving
edges and details, but it may also introduce some smoothing.

Adaptive local noise reduction filter: This filter estimates the local noise level in the image and adapts the
filter parameters accordingly. It is effective at removing noise while preserving details and edges.

Midpoint filter: This filter replaces each pixel with the midpoint value of the neighboring pixels. It is effective
at removing noise while preserving edges and details, but it may also produce some smoothing.

Contraharmonic mean filter: This filter replaces each pixel with the Contraharmonic mean of the
neighboring pixels. It is effective at removing noise of a certain type, such as Gaussian or impulse noise, but
it may also produce some artifacts and reduce image sharpness.

To apply a mean filter to an image, a kernel or mask of a specified size is moved over each pixel in the image.
The value of each pixel in the new image is then calculated as the mean value of the values of all the pixels
within the kernel. The size of the kernel determines the amount of smoothing and the level of detail
preservation.

It is important to note that while mean filters are effective at removing noise, they may also introduce
unwanted artifacts and reduce image sharpness. It is therefore important to carefully choose the filter type and
parameters to achieve the desired level of noise reduction while preserving image details.

CODE

% ARITHMATIC MEAN FILTER

clc;clear;close all;

i=uigetfile('*.*');

62 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

I=imread(i);
J=rgb2gray(I);
subplot(1l,2,1);
imshow(I);title("Original noisy image");
K=padarray(J,[1,11,0);
K=double(K);
[rows,columns]=size(K);
IL=zeros (rows,columns) ;
for r=2:rows-1
for c=2:columns-1

filt=[K(r,c),K(r-1,c),K(xr+l,c),K(x,c-1),K(r,c+l),K(r-1,c-
1),K(r-1,c+1l),K(xr+1l,c-1),K(x+1l,c+1)];

x=mean(filt);
L(r,c)=x;
end
end
subplot(1,2,2);
M=uint8 (L) ;

imshow(M);title("Final image using arithmetic mean filter");

. Live Editor - untitled2.mix *
arithmeticm alphatrimmed.m wiener3.m Contraharmonic.m geometric.m mid_pointm untitled2.mix * arithmatic.mlx +
1 clc;clear;close all; “
2 i=uigetfile('*.*'); B
3 I=imread(i); E|
4 J=rgb2gray(I);
5 subplot(1,2,1);
6 imshow(I);title("Original noisy image");
7 K=padarray(3,[1,1],8);
8 K=doub1e(K);|
9 [rows,columns]=size(K); original noisy image Final image using arithmetic mean filter
10 L=zeros(rows,columns); e
11 for r=2:rows-1
12 for c=2:columns-1
13 filt=[K(r,c),K(r-1,c),K(r+l,c),K(r,c-1),K(r,
14 x=mean(filt);
15 L(r,c)=x;
16 end
17 end
18 subplot(1,2,2);
19 M=uint8(L);
20 imshow(M);title("Final image using arithmetic mean
21
22
»

Figure 1: use of arithmetic mean filter to process image in MATLAB

63 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

Original noisy image Final image using arithmetic mean filter

Figure 2: image processing using arithmetic mean filter in MATLAB

CODE

X

% GEOMETRIC MEAN FILTER
clc;clear;close all;
i=uigetfile('*.*"');
I=imread(i);
J=rgb2gray(I);
subplot(1,2,1);
imshow(J);title("Original noisy image");
K=padarray(Jd,[1,1],1);
K=double (K);
[rows,columns]=size(K);
L=zeros(rows,columns) ;
for r=2:rows-1

for c=2:columns-1

filt=[K(r,c),K(r-1,c),K(x+l,c),K(xr,c-1),K(xr,c+l),K(r-1,c-
1) ,K(r-1,c+1),K(r+l,c-1),K(r+l,c+1l)];

y=prod(filt);
x=power (y,1./9);
L(r,c)=x;
end
end
subplot(1l,2,2);
M=uint8 (L) ;

imshow(M,[]);title("Final image using Geometric mean filter");

64 | Medical Image Processing Laboratory | 120BM0806 | Shreenandan Sahu

B Live Editor - E\image procesing lab\class 6\geometrimean.mlx *

alphatrimmed.m wiener3.m Contraharmonic.m geometric.m mid_point.m arithmatic.mlix geometrimean.mix * +

Ed
1 clc;clear;close all; E
2 izuigetfile('*.*");
3 I=imread(i); &
4 J=rgb2gray(I); Original noisy image Final image using Geometric mean filter
5 subplot(1,2,1); RER,
6 imshow(J);title("Original noisy image");
7 K=padarray(J,[1,1],1);
8 K=double(K);

9 [rows,columns]=size(K);

10 L=zeros(rows,columns);

11 for r=2:rows-1

12 for c=2:columns-1

13 filt=[K(r,c),K(r-1,c),K(r+1,c),K(r,c-1),K(r,c+1),K(r-

14 y=prod(filt);

15 x=power(y,1./9);

16 L(r,c)=x;

17 end

18 end

19 subplot(1,2,2);

20 M=uint8(L);

21 limshow(M, [1);title("Final image using Geometric mean filter"

22

23 V
Figure 3: use of geometric mean filter to process image in MATLAB

Original noisy image Final image using arithmetic mean filter
Figure 4: image processing using geometric mean filter in MATLAB
CODE

% MID POINT FILTER
clc;clear;close all;
i=uigetfile('*.*');
I=imread(i);
J=rgb2gray(I);
subplot(1l,2,1);

imshow(I);title("Original noisy image");

65 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

[rows,columns]=size(J);

K=padarray(J,[1,1],0);

IL=zeros (rows,columns) ;

for r=2:rows-1

for c=2:columns-1

filt=[K(r,c),K(r-1,c),K(x+l,c),K(xr,c-1),K(r,c+l),K(r-1,c-

1) ,K(r-1,c+1),K(xr+1l,c-1),K(x+1l,c+1)];

yl=min(filt); y2=max(filt); x=(yl+y2)./2; L(r-1,c-1)=x;

end

end

subplot(1,2,2);
M=uint8(L);

imshow(M);title("Final image using Mid Point filter");

| alphatrimmed.m

B Live Editor - E\image procesing lab\class 6\midpointmix

| wiener3.m | Contraharmonic.m | mid_pointm | midpointmix | arithmaticmean.mix |+ |

0NV R WN R

clc;clear;close all;
izuigetfile('*.%");
I=imread(1i);
J=rgb2gray(I);
subplot(1,2,1);
imshow(I);title("Original noisy image");
[rows,columns]=size(3);
K=padarray(J,[1,1],8);
L=zeros(rows,columns);
for r=2:rows-1
for c=2:columns-1
filt=[K(r,c),K(r-1,c),K(r+l,c),K(r,c-1),K(r,c+1),K(r-1,c-1),
yl=min(filt);
y2=max(filt);
x=(yl+y2)./2;
L(r-1,c-1)=x;
end
end
subplot(1,2,2);
M=uint8(L);
imshow(M);title("Final image using Mid_Point filter");

Original noisy image Final image using Midpoint filter

Figure 5: use of mid point filter to process image in MATLAB

Original noisy image Final image using Midpolnt filter

Figure 6: image processing using mid point filter in MATLAB

66 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

CODE

% HARMONIC MEAN FILTER

clc;clear;close all;

i=uigetfile('*.*x');

I=imread(i);

J=rgb2gray(I);

subplot(1l,2,1);
imshow(J);title("Original noisy image");
K=padarray(J,[1,1]1,1);

K=double(K);

[rows,columns]=size(K);

L=zeros(rows,columns) ;

for r=2:rows-1 for c=2:columns-1

filt=[(K(r,c),K(r-1,c),K(xr+l,c),K(x,c-1),K(r,c+l),K(r-1,c-

1),K(r-1,c+1),K(r+l,c-1) ,K(xr+l,c+1l)];
s=sum(1l./filt);
x=9./s;
L(r,c)=double(x); end end
subplot(1,2,2);
M=uint8 (L) ;
imshow (M, []);

title("Final image using harmonic mean filter");

B Live Editor - E\image procesing labclass 6\harmonicmean.mix

alphatrimmed.m wiener3m Contraharmonicm harmonicmean.mix +
1 clc;clear;close all;

2 i=uigetfile('*.*");

3 I=imread(i);

4 J=rgb2gray(I);

5 subplot(1,2,1);

6 imshow(3J);title("Original noisy image");

7 K=padarray(3,[1,1],1);

8 K=double(K);

9 [rows,columns]=size(K);

10 L=zeros(rows,columns);

11

12 for r=2:rows-1

13 for c=2:columns-1

14 filt=[K(r,c),K(r-1,c),K(r+l,c),K(r,c-1),K(r,c+1),K(r-1,c-1),
15 s=sum(1l./filt);

16 x=9./s;

17 L(r,c)=double(x);

18 end

19 end

20 subplot(1,2,2);

21 M=uint8(L);

22 imshow(M,[1);

23 titlal"Final imaca nicing harmanic maan filtar™): v

Original noisy imageFinal image using harmonic mean filt

Figure 7: use of harmonic mean filter to process image in MATLAB

67 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

Original noisy image Final image using harmonic mean filter

Figure 8: image processing using harmonic mean filter in MATLAB

CODE

o

% CONTRA HARMONIC MEAN FILTER
clc;clear;close all;
i=uigetfile('*.*"');
I=imread(i);

J=rgb2gray(I);
subplot(1l,2,1);
imshow(I);title("Original noisy image");
K=padarray(J,[1,1],0);
K=double (K);
[rows,columns]=size (K);
L=zeros(rows,columns) ;

g=-.5;

for r=2:rows-1

for c=2:columns-1

filt=[(K(r,c),K(r-1,c),K(xr+l,c),K(xr,c-1),K(r,c+l),K(r-1,c-
1),K(r-1,c+1) ,K(r+l,c-1) ,K(xr+l,c+1)];

x=sum(filt.” (g+1l));
y=sum(filt."q);
z=x/Y;
L(r,c)=z;
end
end
subplot(1,2,2);
M=uint8 (L) ;

imshow(M);title("Final image using Contra-harmonic mean filter");

68 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

B Live Editor - E\image procesing lab\class 6\contraharmonic.mix

alphatrimmed.m wiener3.m Contraharmonic.m contraharmonic.mix +
1 clc;clear;close all;

2 i=uigetfile('*.*');

3 I=imread(i);

4 J=rgb2gray(I);

5 subplot(1,2,1);

6 imshow(I);title("Original noisy image");

7 K=padarray(3,[1,1],0);

8 K=double(K);

Original noisy inftigal image using Contra-harmonic mear

9 [rows,columns]=size(K);|

1@ L=zeros(rows,columns);

11 q=-.5;

12 for r=2:rows-1

13 for c=2:columns-1

14 filt=[K(r,c),K(r-1,c),K(r+l,c),K(r,c-1),K(r,c+1),K(r-1,c-1),

15 x=sum(filt.~(g+1));

16 y=sum(filt.~q);

17 z=x/y;

18 L(r,c)=z;

19 end

20 end

21 subplot(1,2,2);

22 M=uint8(L);

23 imchaw(M Y-+it1al("Final imace ncino Cantra-harmanic mean filtar"\- 7
Figure 9: use of contra harmonic mean filter to process image in MATLAB

Original noisy image Final image using Contra-harmonic mean filter
Figure 10: image processing using contra harmonic mean filter in MATLAB
CODE

\°

s ALPHA TRIMED FILTER

clc;clear;close all;

i=uigetfile('*.*x"');

I=imread(1i);

J=rgb2gray(I);

subplot(1,2,1);
imshow(I);title("Original noisy image");

K=padarray(J,[1,11,0);

69 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

K=double(K);

[rows,columns]=size(K);

IL=zeros (rows,columns) ;

alpha=2;
d=2.*alpha;
for r=2:rows-1
for c=2:columns-1

filt=[K(r,c),K(r-1,c),K(xr+l,c),K(xr,c-1),K(r,c+l),K(r-1,c-

1),K(r-1,c+1),K(xr+1l,c-1),K(x+1l,c+1)];

end
end
subplot
M=uint8

sort (filt);
x=(1./(9-d))*sum(filt(alpha+l : 9-alpha));

L(r,c)=x;

(1,2,2);
(L);

imshow(M);title("Final image using Alpha-trimmed filter");

alphatrimmed.m

0NV A WN R

MNROMNNRRRRBRRB B B B 2
WNREO®OLWOWNOONBWNEO® W

. Live Editor - E\image procesing lab\class 6\alpthatrimed.mix *

wiener3.m alpthatrimed.mix * +

clc;clear;close all;

i=uigetfile('*.*");

I=imread(1i);

J=rgb2gray(I);

subplot(1,2,1);

imshow(I);title("Original noisy image");

K=padarray(3,[1,1],0);

K=double (K);

[rows,columns]=size(K);

L=zeros(rows, columns);

alpha=2;

d=2.*alpha;

for r=2:rows-1

for c=2:columns-1
filt=[K(r,c),K(r-1,c),K(r+l,c),K(r,c-1),K(r,c+1),K(r-1,c-1),
sort(filt);
x=(1./(9-d))*sum(filt(alpha+l : 9-alpha));
L(r,c)=x;
end

end

subplot(1,2,2);

M=uint8(L);

imchnuwiM Y-+i+1al"Final imace 1icing Alnha-trimmed Filter")-

Original noisy imageFinal image using Alpha-trimmed filt

Figure 11: use of alpha trimmed filter to process image in MATLAB

70 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

Final image using Alpha-trimmed filter

Figure 12: image processing alpha trimmed filter in MATLAB

WEINER INVEERSE FILTER

The Weiner inverse filter is a signal processing technique used to restore an image or signal that has been
degraded by a known linear time-invariant (LTI) system. The filter is named after Norbert Weiner, who first
proposed it in the 1940s. The Weiner inverse filter is designed to remove the effects of degradation caused by
an LTI system, such as blurring, distortion, or noise, by filtering the degraded signal. The filter works by
estimating the original signal's frequency spectrum and then applying a weighted inverse filter to the degraded
signal. The filter's design involves two main steps: estimation of the power spectral density (PSD) of the
original signal and estimation of the PSD of the degradation process. The PSD estimates are then used to
derive a filter that minimizes the mean square error between the original and filtered signals. The Weiner
inverse filter is an optimal linear filter that takes into account the statistical properties of the original signal
and the noise present in the degraded signal. It is a powerful tool for signal restoration but can be sensitive to
errors in the PSD estimates, which can lead to instability and noise amplification. The Weiner inverse filter is
widely used in image processing, audio signal processing, and other fields where signal restoration is
necessary. However, it is important to note that the filter is only effective when the degradation process is
known and can be modelled accurately.

CODE

% WEINER INVEERSE FILTER
clc;clear;close all;
i=uigetfile('*.*"');
I=imread(i);
fl=rgb2gray(I);
f=double(£fl);

[rows,columns]=size(f);

[

% Create a blurred and noisy version of the image

71 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

h = ones(3) / 9;%degradation function
F=fft2(£f);
H=fft2 (h,rows,columns);

N=25*randn (rows,columns) ;

G=F.*H ;

g=1ifft2(G)+N;

subplot(1l,3,1);imshow(fl);title("Original image");
subplot(1l,3,2);imshow(uint8(g),[]);title("Degraded Image");

wfilter=(conj(H)./((abs(H)."2)+(abs(N)."2)./(abs(F)."2)));

final=wfilter.*G;

finall=ifft2(final);
subplot(1l,3,3);imshow(uint8(finall),[]);title("Restored Image");

| wiener3.m | weiner.mix * |+ |
E
1 clc;clear;close all; E|
2 i=uigetfile('*.*");
3 I=imread(i); =
4 fl=rgb2gray(I);
5 f=double(f1);
6 Warning: Displaying real part of complex input.
7 [rows, columns]=size(f);
8 % Create a blurred and noisy version of the image
9 h = ones(3) / 9;%degradation function
10 F=fft2(f);
11 H=fft2(h,rows, columns);
12 N=25*randn(rows, columns); Original image Degraded Image Restored Image
13 . ey
14 G=F.*H ;
15 g=1fft2(G)+N;
16 subplot(1,3,1);imshow(fl);title("Original image");
17 subplot(1,3,2);imshow(uint8(g),[]);title("Degraded Image");
18
19 wfilter=(conj(H)./((abs(H).~2)+(abs(N).~2)./(abs(F).”2)));
20
21 final=wfilter.*G;
22 finall=ifft2(final);
23 cithn1nt (1 2 2\ :imchauwlnint2(Final1) 1) -+it+1al"Ractnred Tmaoce"){ s M

Figure 13: use of weiner inverse filter to process image in MATLAB

72 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

Original image Degraded Image Restored Image

Figure 14: image processing weiner inverse filter in MATLAB

Shreenandan Sahu |[120BM0806

73 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

LLab Report 7

Aim
Image segmentation in MATLAB.

Theory

Image registration is a technique used to align two or more images of the same scene taken at different times,
viewpoints or by different sensors. In MATLAB, there are several ways to perform image registration. Here
is a general overview of the steps involved in image registration using MATLAB: Load the images: The first
step is to load the images that you want to register using the imread function in MATLAB. Pre-processing:
Depending on the quality and size of the images, pre-processing may be necessary. Common pre-processing
techniques include filtering, resizing, and normalization. Feature detection: The next step is to detect features
in the images that can be used for registration. MATLAB has built-in functions like detect SURF Features and
detect BRISK Features that can be used for feature detection. Feature extraction: After detecting features, the
next step is to extract descriptors that can be used to match the features in the two images. MATLAB provides
functions like extract Features to extract descriptors. Feature matching: The extracted features and descriptors
are then matched using functions like match Features in MATLAB. This step aims to find the corresponding
points between the two images. Transformation estimation: Once the corresponding points are found, a
transformation model is estimated to align the two images. MATLAB has functions like estimate Geometric
Transform and fitgeotrans for transformation estimation. Image registration: Finally, the registered images are
obtained by applying the estimated transformation to one of the images. The imwarp function in MATLAB
can be used for image warping.

Image registration:

* Overlapping 2 images so that we can visualize the differences between the 2 images.

« Applications - What are the effects of a drug that can be visualized by overlapping 2 images.
1)Different transforms:

a) Affine transformation:

i. Scaling

ii. Rotation

iii. Translation

iv. Changing the transparency of the base image/registered image

2)Basically there are 2 images:

a) Base Image (Untreated/before)

b) Unregistered image (After treatment)

3)How to do scaling:

a) Mark 3 non-collinear points which we feel have not varied much in base and unregistered image.
b) Take the Euclidean distance between any 2 of these points in both images. (base image - d1, unregistered

image - d2)

74 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

c) Scale the unregistered image so that it can be overlapped. Scaling Factor =d1/d2)

4)How to do rotation:

» Take three points in each image

* Find the angle between the two lines in both images using theta = tan”(-1) (y2-y2/x2-x1)
* Rotation angle = | theta2 - thetal |

5) How to do translation:

* Take the same three points in both the base and the unregistered image.

» Here we are going to shift the origin of the unregistered image

» Take a point on the base image, then take the same point in the unregistered image.

» How these 2 images should have the same spatial location for being overlapped.

 Hence we shift the origin of the unregistered image so that the point in the unregistered image should have
the same spatial location as the base image.

CODE

o\

IMAGE REGISTRATION

i = imread("ok.png");
text(size(i,2),size(i,1)+15,

'Original Image 1','FontSize',7,'HorizontalAlignment', 'right');
unregistered = imread("cut.png");

text(size(unregistered,2),size(unregistered,1)+15, 'Image
2','FontSize',7, 'HorizontalAlignment', 'right');

[movingPoints, fixedPoints] = cpselect(unregistered,i, 'Wait', true);
t = fitgeotrans(movingPoints,fixedPoints, 'affine');
Rfixed = imref2d(size(1i));

registered = imwarp(unregistered,t, 'OutputView', Rfixed);
subplot(1l,3,1);imshow(i);

subplot(1l,3,2);imshow(unregistered);

subplot(1l,3,3);imshowpair(i,registered, 'blend');

75 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

untitled.mix *

| registrationmix* | untitledmix* | 4 |
:
il i = imread("ok.png"); 06 B
2 text(size(i,2),size(i,1)+15, ...
3 ‘Original Image 1','FontSize',7,'HorizontalAlignment','right'); 04 =
4 unregistered = imread("cut.png");
5 text(size(unregistered,2),size(unregistered,1)+15, 'Image 2", 'FontSize',7, "Horizonte
6 [movingPoints,fixedPoints] = cpselect(unregistered,i, ‘Wait',true); 02
7 t = fitgeotrans(movingPoints,fixedPoints, "affine"');
8 Rfixed = imref2d(size(i));
12 registered = imwarp(unregistered,t, 'OutputView',Rfixed); 00 02 04 06 08 1
11 subplot(1,3,1);imshow(i);
12 subplot(1,3,2);imshow(unregistered);
13 subplot(1,3,3);imshowpair(i,registered, 'blend");
14 |

Figure 1: image registration in MATLAB

Figure 2: image registration of injured and healed hand in MATLAB

76 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

Fixed Detail: i

Moving Detail: unregistered 200% | [Lockatio |200%

N

L
L

Figure 3: point selection for image registration of injured and healed hand in MATLAB

Shreenandan Sahu [120BM0806

77 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

LLab Report 8

Aim
Image segmentation using point segmentation, line segmentation and edge detection.

Theory

Image segmentation is the process of dividing an image into multiple segments or regions, each of which
corresponds to a different object or part of the image. Point segmentation, line segmentation, and edge
detection are all techniques that can be used to perform image segmentation.

Point segmentation involves identifying individual points or pixels within an image that belong to a particular
segment or object. This can be achieved using techniques such as clustering or thresholding, where pixels with
similar characteristics are grouped together.

Line segmentation involves identifying linear features within an image, such as edges or contours, and using
these features to separate the image into different segments. This can be achieved using techniques such as
the Hough transform, which can detect lines or curves within an image.

Edge detection involves identifying abrupt changes in brightness or color within an image, which can be used
to locate the boundaries between different objects or segments. This can be achieved using techniques such as
the Sobel operator, which highlights areas of the image with high spatial gradients.

All three of these techniques can be used in combination to perform image segmentation. For example, edge
detection can be used to identify the boundaries between different segments, while point segmentation and
line segmentation can be used to group pixels or linear features within each segment. The choice of technique
will depend on the specific requirements of the image segmentation task, as well as the characteristics of the
image being segmented.

CODE

% POINT SEGMENTATION

fprintf('please Select an image');
y=uigetfile('*.*"');

i=imread(y);

k=rgb2gray(i);

d = padarray(k,[1 1],0, 'both');
[r,c]=size(d);

s=zeros (r+2,c+2)

78 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

for R =2:(r-1)
for C=2:(c-1)
s(R,C)= d(R+1,C)+d(R-1,C)+d(R,C+1)+d(R,C-1)-4*d(R,C);

% if value>=100
% d(R,C)=1;
% else
% d(R,C)=0;
% end

end
end

subplot(1l,2,1);imshow(k);title('Original Image');
subplot(1l,2,2);imshow(s);title('detected');

Live Editor - puimemematinn mix * [Variable
| pointsegmentationmix* 5 | linesegmentationmix* | + |
0 o 0 0 0 [0 0 ‘&

1 -FprJ'.nt-F(.ple?se ?elect an image'); g g 2 g g g g g B
2 y=uigetfile('*.*"); o o o o o ° ° o _
3 i=imread(y); e o o o o e o) =
4 k=rgb2gray(i); 2}] 0] 2 2} 0]
5 d = padarray(k,[1 11,0, 'both'); 4 0 0] 0 0 0 e
5 [r,cl=size(d); [] 0]] 2 []
7 s=zeros(r+2,c+2) .
8 for R =2:(r-1)
9 for C=2:(c-1)

10 s(R,C)= d(R+1,C)+d(R-1,C)+d(R,C+1)+d(R,C-1)-4*d(R,C);

11 % if value>=100

12 % d(R,C)=1; Original Image

13 % else

14 % d(R,C)=0;

15 % end

16 end

17 end

18 |

19 subplot(1,2,1);imshow(k);title('Original Image®);

20 subplot(1,2,2);imshow(s);title(detected’);

21

Figure 1: use of point segmentation to detect points in image in MATLAB

Original Image

Figure 2: point detection using point segmentation in MATLAB

79 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

CODE

\°

s LINE SEGMENTATION

fprintf('please Select an image');

y=uigetfile('*.*"');

i=imread(y);

k=double (rgb2gray(i));

d = padarray(k,[1 1],0, 'both'");

[r,c]l=size(d);

hori=zeros(r+2,c+2)

verti=zeros(r+2,c+2)

diagl=zeros(r+2,c+2)

diag2=zeros(r+2,c+2)

hor=[-1 -1 -1 ; 2 2 2 ; -1 -1 -1] % horizontal filter

ver=[-1 2 -1 ; -1 2 -1 -1 2 -1] % Vertical filter

dial=[2 -1 -1 ; -1 2 -1 ; -1 -1 2] % diagonal 45 degree filter
dia2=[-1 -1 2 ; -1 2 -1 ; 2 -1 -1] % diagonal 135 degree filter
for x =2:(r-1)

~e
.

for y=2:(c-1)

kernel= [d(x-1,y-1) d(x-1,y) d(x-1,y+1) ; d(x,y-1) d(x,y)
d(x,y+1l) ; d(x+1,y-1) d(x+1,y) d(x+1,y+1)];

h=sum(sum(hor.*kernel));
v=sum(sum(ver.*kernel));
dl=sum(sum(dial.*kernel));
d2=sum(sum(dia2.*kernel));
hori(x,y)=h;
verti(x,y)=v;
diagl(x,y)=dl;
diag2(x,y)=d2;
end

end

all=hori+verti+diagl+diag2;

subplot(2,3,1

subplot(2,3,2

);imshow(i);title('Original Image');
)
subplot(2,3,3)
)
)
)

7
;imshow(hori);title('horizontal lines');
;imshow(verti);title('vertical lines');
subplot(2,3,4
subplot(2,3,5);imshow(diag2);title('diagonal line 135');

;imshow(diagl);title('diagonal line 45');

subplot(2,3,6);imshow(all);title('all line in one');

80 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

.LiveEditm linesegmentation.mix * O Variables - s
linesegmentation.mlx *
a4 k= dcuble(rgngray(DE N
5 d = padarray(k,[1 1],0, 'both'); dia2 =
6 [r,cl=size(d); -1 -1 2
7 hori=zeros(r+2,c+2) ; j i
3 verti=zeros(r+2,c+2)
9 diagl-zeros(r+2,c+2)
10 diag2=zeros(r+2,c+2)
11 hor=[-1 -1 -1 3 222 ; -1 -1 -1] Original Image horizontal lines vical Iines
12 ver=[-12 -1 ; -12-1; -12 -1] ¥
13 dial=[2 -1 -1 ; -1 2 -1 ; -1 -1 2]
14 dia2=[-1 -1 2 ; -1 2 -1; 2 -1 -1]
15 for x =2:(r-1)
16 for y=2:(c-1)
17 kernel= [d(x-1,y-1) d(x-1,y) d(x-1,y+1) ; d(x,y-1) d(x,
18 h=sum(sum(hor.*kernel));
19 v=sum(sum(ver.*kernel));
20 dl=sum(sum(dial.*kernel));
21 d2=sum(sum(dia2.*kernel));
22 hgri(x)y):hj‘ diagonal line 45 diagonal Iie 135
23 verti(x,y)=v; - :
24 diagl(x,y)=d1;
25 diag2(x,y)=d2;
26 end
27 end
28 all=hori+verti+diagl+diag2;
29 subplot(2,3,1);imshow(i);title(Original Image');
30 subplot(2,3,2);imshow(hori);title(horizontal lines');
31 subplot(2,3,3);imshow(verti);title(vertical lines'); -
32 »

o] [w] ()

Figure 3: use of line segmentation to detect lines in MATLAB

Original Image horizontal lines vertical lines

,/_
Y —

diagonal line 45 diagonal |

Figure 4: detection of various types of lines in MATLAB

EDGE DETECTION

Edge detection is a computer vision technique that involves identifying the boundaries of objects
within an image. It is a crucial step in many image processing applications, such as object recognition, image
segmentation, and feature extraction. Edge detection algorithms typically work by analyzing the variations in

81 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

brightness, colour, or texture across an image. The most commonly used edge detection algorithms include
the Sobel, Prewitt, and Canny edge detection algorithms. The Sobel and Prewitt algorithms use convolution
filters to identify edges based on the intensity gradients in the image. The Canny algorithm, on the other hand,
uses a more sophisticated approach that involves detecting edges at multiple scales and suppressing false
positives. Once the edges have been detected, they can be further processed to extract useful information, such
as the shape and size of objects in the image. This information can then be used for a wide range of
applications, such as object tracking, face recognition, and autonomous driving.

CODE

\

% EDGE DETECTION

fprintf('please Select an image');
y=uigetfile('*.*"');

i=imread(y);

J=rgb2gray(i);

K=padarray(J,[1,11,0);
K=double(K);
[rows,columns]=size (K);
L=zeros(rows,columns) ;
gx=[-1 -1 -1;0 0 0;1 1 17;
gy=[-1 0 1;-1 0 1;-1 0 17;
sl=[0 0 0;0 O 0;0 0 0];
s3=[0 0 0;0 O 0;0 0 07];
for r=2:rows-1

for c=2:columns-1

kernel=[K(r-1,c-1) K(r-1,c) K(r-1,c+l); K(r,c-1) K(r,c)
K(r,c+l); K(r+l,c-1) K(r+l,c) K(r+l,c+l)];

sl=kernel. *gx;

s2=sum(sl,"all");

s3=kernel.*gy;

s4=sum(s3,"all");

L(r,c)=sqgrt(s2."2+s4.72);

end

end
subplot(1l,2,1);imshow(i);title("Original image");
subplot(1,2,2);imshow(uint8(L),[]);title('edges detected');

82 | Medical Image Processing Laboratory | 1220BM0806 | Shreenandan Sahu

B Live Editor - EA\image procesing lab\class 8\edgedetection.mix *
edgedetection.mix * linesegmentation.mix +
p— — - i)
1 fprintf('please Select an image'); please Select an image —
2 y=uigetfile('*.*'); =
3 i=imread(y); =
4 J=rgb2gray(i);|
5
6
7 K=padarray(J,[1,1],0);
8 K=double(K);
9 [rows, columns]=size(K);
10 L=zeros(rows,columns);
11 gx=[-1 -1 -1;0 @ 0;1 1 1];
12 gy=[-1 0 1;-1 0 1;-1 0 1]; Original image edges detected
13 s1=[0 © 0;0 @ 0;0 @ 0]; ’& 09, a “- [, o
14 s3=[0 0 0;0 @ 0;0 0 8]; » Q ’egg O9®
15 for r=2:rows-1 e s)e@ @8‘9.
16 for c=2:columns-1 ’ = OU(eOo
g w0 o
17 kernel=[K(r-1,c-1) K(r-1,c) K(r-1,c+1); K(r,c-1) K(r,c) K(r,c+1); K(r+ i o(;e’b 4 OB
18 sl=kernel.*gx; D@£9 NPCR-IH
19 s2=sum(sl,"all");
20 s3=kernel.*gy;
21 s4=sum(s3,"all");
22 L(r,c)=sqrt(s2.42+s4.72);
23 end
24 end
25 subplot(1,2,1);imshow(i);title("Original image");
26 subplot(1,2,2);imshow(uint8(L),[]);title(edges detected')
»
Figure 5: use of edge detection code to detect edges in MATLAB
Original image edges detected
24 09 -we '
Q e ¢
5 S 4 o
©g@ 0_ Y00
e
e 0 O
YA 0 @09
Pa (.
). © 0 @Q

Figure 6 edge detection in MATLAB

THRESHOLD BASED SEGMENTATION

Threshold-based segmentation is a commonly used technique in image processing and computer vision for
segmenting an image into different regions based on their intensity values. The basic idea behind threshold-
based segmentation is to set a threshold value, and then classify each pixel in the image based on whether its
intensity value is above or below the threshold.

The threshold value can be chosen manually or automatically, depending on the specific application and the
characteristics of the image being segmented. If the threshold is chosen manually, it is typically based on some
prior knowledge of the image or the desired segmentation result. If the threshold is chosen automatically, there
are several methods that can be used, such as Otsu's method, which selects a threshold that minimizes the
variance between the two classes of pixels (above and below the threshold).

Once the threshold value is set, each pixel in the image is compared to the threshold, and is classified as either
part of the foreground (above the threshold) or part of the background (below the threshold). The result is a

83 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

binary image, where the foreground pixels are represented as white and the background pixels are represented
as black.

Threshold-based segmentation is a simple and computationally efficient technique, but it has some limitations.
It works well when there is a clear contrast between the foreground and background, but may fail when there
is significant overlap in intensity values between the two classes. In such cases, more advanced techniques
such as edge detection and region-growing may be necessary.

CODE

\

% THRESHOLD-BASED SEGMENTATION
fprintf('please Select an image');
y=uigetfile('*.*"');
i=imread(y);
d=rgb2gray(i);
[r,c]l=size(d);
$Here the histogram is displayed
funchist=imhist(d);
subplot(1l,1,1);bar(funchist);title('Histogram of the image');grid on;
%Here the threshold values are set.
s=zeros(r,c);
for R =1l:r
for C=1l:c
if d(R,C)==91 || d(R,C)==84 ||d(R,C)==122
s(R,C)=1;
else
s(R,C)=0;

end

end

end
subplot(1l,3,1);imshow(d);title('Original Image');

subplot(1,3,2);imshow(s);title('detected');
subplot(1l,3,3);imshow(double(d).*s);title('segmented');

84 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

. Live Editor - E\image procesing lab\class 8\thresholdbasedsegmentation.mix

pointsegmentation.mix histogram.mlx thresholdbasedsegmentation.mlx +

PICOST OTITCT O IMaET

4 - .
fprintf('please Select an image'); x10 Histogram of the image

y=uigetfile(*.*");
i=imread(y);
d=rgb2gray(i);
[r,cl=size(d);
%Here the histogram is diplayed
funchist=imhist(d);
subplot(1,1,1);bar(funchist);title('Histogram of the image');grid or
%Here the threshold values are set. X 92 X 123
s=zeros(r,c); X 85 Y 23421 Y 23733 X 156
for R =1:r Y 12452 | . Y 10386
for C=1:c 1 | .
if d(R,C)==91 || d(R,C)==84 ||d(R,C)==122 0 ‘
s(R,C)=1;
else
s(R,C)=0;
end

N WA W N

R o=
[

[y
]

L
W

80 100 120 140 160
Code

=
\n

iy
TR

e =
(Ve v o)

end
end

NN
= ®

Original Image detected segmented

h e

N
]

subplot(1,3,1);imshow(d);title('Original Image');

subplot(1,3,2);imshow(s);title(detected'); k ® k .
subplot(1,3,3);imshow(double(d).*s);title('segmented’);

NN
v s W

*

N
w1

]
@

-

» -

~
~

Figure 7: use of threshold-based segmentation in MATLAB

Original Image detected segmented

A o WNE LN
* * *

Figure 8: segmented image in MATLAB

REGION BASED SEGMENTATION

Region-based segmentation is a type of image segmentation technique that involves partitioning an image into
multiple regions or segments based on certain characteristics or features of the image. The goal of region-
based segmentation is to identify and separate different objects or regions within an image based on their
similarities or differences.

There are several approaches to region-based segmentation, including thresholding, edge detection, and
clustering. In thresholding, the image is converted into a binary image by selecting a threshold value that
separates the image pixels into foreground and background. In edge detection, the boundaries of different
regions are detected based on changes in intensity or colour. Clustering algorithms group similar pixels
together based on their features or attributes, such as colour, texture, or intensity.

Once the image has been segmented into regions, further analysis can be performed on each region separately.
This can include feature extraction, object recognition, and classification. Region-based segmentation is

85 | Medical Image Processing Laboratory | 120BMO0806 | Shreenandan Sahu

widely used in applications such as image processing, computer vision, and medical imaging, where
identifying and analysing specific regions of an image is important.

REGION GROWING SEGMENTATION

Region growing is a type of region-based segmentation technique that involves starting with a seed point or
region and gradually expanding the region by including neighbouring pixels or regions that have similar
properties or characteristics. The process continues until the entire region of interest has been segmented. The
region growing algorithm works by selecting a seed point or region and then examining its neighbouring pixels
or regions. The algorithm checks if the neighbouring pixels or regions meet a certain similarity criterion, such
as having similar colour, intensity, or texture. If they do, they are added to the growing region, and the
algorithm continues to examine their neighbouring pixels or regions. This process continues until no more
pixels or regions meet the similarity criterion, and the growing region is complete.

One advantage of region growing is that it can handle images with variable illumination and shading.
However, the algorithm can be sensitive to the choice of seed point or region, as the resulting segmented
region can vary depending on the starting point. To address this issue, multiple seed points can be used, and
the final segmented region can be obtained by merging the results of multiple regions growing processes.
Region growing is widely used in medical imaging applications, such as segmenting tumours in MRI or CT
scans. It is also used in computer vision applications, such as object recognition and tracking.

CODE

FUNCTION FOR REGION GROWING SEGMENTATION

function [segmented image] = region growing(image, seed point,
threshold)

% Inputs:

% - image: The input grayscale image

% - seed _point: A 2-element vector containing the (x,y) coordinates

of the seed point

o\

- threshold: The threshold value for region growing

o\

Output:

o°

- segmented image: The output binary segmented image

()

$ Initialize the segmented image to all zeros

segmented image = zeros(size(image));

% Get the size of the image

[rows,cols] = size(image);

[+

$ Initialize the queue with the seed point

queue = [seed point(l), seed point(2)];

86 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

% Loop through the queue until it is empty

while ~isempty (queue)

% Pop the first element from the queue
current point = queue(l,:);

queue(l,:) = [1];

% Check if the current point is already segmented
if segmented image(current point(2), current point(l)) == 1
continue;

end

% Check if the current point is within the image boundaries
if current point(l) < 1 || current point(l) > cols ||
current point(2) < 1 || current point(2) > rows
continue;

end

% Check if the intensity of the current point is below the

threshold

end

if image(current point(2), current point(l)) < threshold
continue;

end

% Mark the current point as segmented

segmented image(current point(2), current point(l)) = 1;

o

% Add the neighbors of the current point to the queue

queue(end+l,:) = [current point(l)-1, current point(2)-1];
queue(end+l,:) = [current point(l), current point(2)-1];
queue(end+l,:) = [current point(l)+1l, current point(2)-1];
queue(end+l,:) = [current point(l)-1, current point(2)];
queue(end+1l,:) = [current point(l)+1l, current point(2)]
queue(end+1l,:) = [current point(l)-1, current point(2)+l],
queue(end+l,:) = [current point(l), current point(2)+1];
queue(end+l,:) = [current point(l)+1l, current point(2)+1];

87 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

CODE

REGION GROWING SEGMENTATION

fprintf('please Select an image');
y=uigetfile('*.*"');

i=imread(y);

image=rgb2gray(i);

subplot(1l,2,1);
imshow(image);title("Original Image");

% Set the seed point and threshold value
seed _point = [300 , 5507;

threshold = 10;

% Call the region growing function
segmented image = region growing(image, seed point, threshold);
% Display the segmented image
subplot(1,2,2);

imshow(segmented image);

. Live Editor - untitled3.mlx *

region_growing.m untitled3.mix * +

&
1 fprintf(please Select an image'); please Select an image E
2 y=uigetfile(*.*"); =
3 i=imread(y); E
4 image=rgb2gray(i);
5 subplot(1,2,1);
6 imshow(image);title("Original Image");
7 QOriginal Image
8
9 % Set the seed point and threshold value
10 seed point = [25@, 250];
11 threshold = 110;
12
13 % Call the region growing function
14 segmented_image = region_growing(image, seed_point, threshold);
15
16 % Display the segmented image
17 subplot(1,2,2);
18 imshow(segmented_image);
19
20

» -

Figure 9: use of region growing segmentation in MATLAB

88 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

Original Image Tumor Detected

Figure 10: segmented image in MATLAB

Shreenandan Sahu [120BM0806

89 | Medical Image Processing Laboratory | 1220BMO0806 | Shreenandan Sahu

	Lab Report 1.pdf
	Lab Report 2.pdf
	Lab Report 3.pdf
	Lab Report 4.pdf
	Lab Report 5.pdf
	Lab Report 6.pdf
	Lab Report 7.pdf
	Lab Report 8.pdf

